College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A tuning fork that vibrates at a frequency 680 Hz is placed over an 80 centimeter long cylinder that is completely filled with water. The water is then allowed to drain out, creating an air column of varying length above the surface of the water and inside the cylinder. Find the distances d between the top of the cylinder and the surface of the water for which the air column will resonate at 680 Hz. Assume that the speed of sound is 340 m/s.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 102 kg/m3? What is the speed of sound in benzene, which has a bulk modulus of 1.05 x 109 Pa and a density of 8.76 x 1094.82 km/sarrow_forwardA cylinder completely filled with an unknown liquid has a radius of 1.50 cm, a length of 64.0 cm, and a mass of 357 g. An engineer performs an experiment to measure the speed of sound in the liquid. A small speaker emits a sound pulse at one end of the cylinder, which travels through the liquid and is detected by a microphone attached at the other end. The elapsed time between emission of the sound pulse and its detection by the microphone is measured by an electronic circuit to be 5.90 x 10-4 s. What the bulk modulus (in Pa) of the liquid in the cylinder? 3714 x What is the speed of sound in the material? How is it related to the bulk modulus and density of the material? What is the volume of a cylinder? Be careful with units in your calculations. Pa Need Help? Read It Submit Answerarrow_forwardA sound wave arriving at your ear is transferred to the fluid in the cochlea. If the intensity in the fluid is 0.410 times that in air and the frequency is the same as for the wave in air, what will be the ratio of the pressure amplitude of the wave in air to that in the fluid? Approximate the fluid as having the same values of density and speed of sound as water. Speed of sound in dry air (20.0°C, 1.00 atm) is 343 m/s, density of dry air (at STP) is 1.29 kg/m3, density of water is 1000 kg/m3, and speed of sound in water is 1493 m/s.arrow_forward
- A well with vertical sides and water at the bottom resonates at 7.00 Hz and at no lower frequency. (The air filled portion of the well acts as a tube with one closed end and one open end.) The air in the well has a density of 1.10 kg/m^3 and a bulk modulus of 1.33×10^5 Pa. How far down in the well is the water surface?arrow_forwardA flute may be thought of as a pipe open at both ends. When all the holes of a well-designed flute are covered and the temperature is 20.0°C, it will produce sound with a frequency of 261.6 Hz (middle C). The speed of sound in air at 20.0°C is 343 m/s. (a) Find the length of the flute (in m), assuming middle C is the fundamental. 0.655 m (b) When an identical flute is played at the same time and in the same manner (all holes covered) in a nearby cold room, the cold room (in °C). beat frequency of 1.60 Hz is heard. Determine the temperature in x First, establish if the frequency in the cold room will be greater or smaller than in the warm room. See if you can write an expression which shows how the frequency depends on speed of sound and the length of the flute for both the warm and cold room and then combine these expressions to obtain the speed of sound in the cold room. Knowing the speed of sound in the cold room and how the speed of sound depends on the temperature, you can now…arrow_forwardA tuning fork is held over the top of a graduated cylinder that is slowly filled with water. Two resonances are noted as the cylinder is filled. They occur when the water level is 56.5 cm and 17.5 cm below the rim. Note that there is an end correction, meaning that the effective length of the air column is longer than the observed length by a fixed constant amount. If the speed of sound is 343 m/s, find the frequency of the tuning fork.arrow_forward
- A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (a) What is the speed of sound in the flute? A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (b) What is the wavelength of the first harmonic? Consider the flute to be a pipe open at both ends A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (c)Consider the flute to be a pipe open at both ends and find its length, assuming this frequency is the fundamental frequency A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. A second player, nearby in a colder room, also attempts to play middle C on an identical flute. A beat frequency of 3.00 beats/s is heard. (e) What is the speed of sound in the second room? A flute is designed so that it plays a…arrow_forwardA train is moving away from an observer at a speed of 50 m/s with its whistle on, the frequency of the whistling sound being 400 Hz. What should be the approximate frequency heard by a stationary observer? Take the speed of sound as 345 m/s when atmospheric temperature is 24°C. 328 Hz 310 Hz 380 Hz 349 Hzarrow_forwardIf Mel’s face is 38.9 cm in front of a concave shaving mirror creating an upright image 1.46 times as large as the object, what is the mirror’s focal length? To continue please enter the result in units of cm. Round your answer to 1 decimal place.arrow_forward
- If the vocal tract of a human is considered a closed tube 17 cm in length, what is the frequency of what would become the second harmonic? Consider 340 m/s as the speed of sound. The answer must be in Hz units.arrow_forwardDeep ultrasonic heating is used to promote healing of torn tendons. It is produced by applying ultrasonic sound over the affected area of the body. The sound transducer (generator) is circular with a radius of 1.46 cm, and it produces a sound intensity of 6.53 × 103 W/m2. How much time is required for the transducer to emit 3910 J of sound energy?arrow_forwardThe speed of sound in a solid medium is given by ?=?/?‾‾‾‾√v=E/ρ where ?E is the value of Young's modulus for the solid and ?ρ is the density. A sound wave travels at 5.8×1035.8×103 m/s in a steel rod of length 1.11 m, diameter 2.0 cm and mass 7.0 kg. Use the data to determine the value of the Young's modulus for steel. Give your answer in giga-pascal (GPa, 109 Nm-2).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON