College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A trap-jaw ant snaps its mandibles shut at very high speed, a good trait for catching small prey. But an ant can also slam its mandibles into the ground; the resulting force can launch the ant into the air for a quick escape. A 12 mgmg ant hits the ground with an average force of 47 mNmN for a time of 0.13 msms; these are all typical values.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- During a squash game, a player hits the ball, of 24 g, which is moving toward him horizontally at 150 km/h. The impact between the racket and the ball lasts 1.2 ms and the ball leaves with an identical speed but in the opposite direction as the initial velocity. The ball then hits the wall in front, 8 m away and 18 cm below the height of the hit. What is the average force acting on the ball during the impact?arrow_forwardThe carbon isotope 14C is used for carbon dating of archaeological artefacts. 14C decays to 14N by a process known as beta decay, in which the nucleus emits an electron (also known as a beta particle) and a subatomic particle called a neutrino. In one such decay, the electron and the neutrino are emitted in opposite directions to each other. The electron has a speed of 5 x 10 m/s and the neutrino has a momentum of 5 x 1024 kg m/s. n as What is the recoil speed of the resulting 14N nucleus? (Take the mass of the carbon-14 and nitrogen-14 nuclei to be 2.34 x 10 26 kg and the mass of the electron to be 9.11 x 1031 kg. If you were aware of such things and concerned, please ignore relativistic effects.)arrow_forwardThe carbon isotope 14C is used for carbon dating of archaeological artefacts. 14C decays to 14N by a process known as beta decay, in which the nucleus emits an electron (also known as a beta particle) and a subatomic particle called a neutrino. In one such decay, the electron and the neutrino are emitted in opposite directions to each other. The electron has a speed of 4 x 107 m/s and the neutrino has a momentum of 8 × 10-24 kg m/s. What is the recoil speed (in m/s) of the resulting 14N nucleus? (Take the mass of the carbon-14 and nitrogen-14 nuclei to be 2.34 x 10-26 kg and the mass of the electron to be 9.11 x 1031 kg. If you were aware of such things and concerned, please ignore relativistic effects.)arrow_forward
- Two objects (m, = 4.50 kg and m, = 3.30 kg) are connected by a light string passing over a light, frictionless pulley as in the figure below. The 4.50-kg object is released from rest at a point h = 4.00 m above the table. (a) Determine the speed of each object when the two pass each other. m/s (b) Determine the speed of each object at the moment the 4.50-kg object hits the table. m/s (c) How much higher does the 3.30-kg object travel after the 4.50-kg object hits the table? Need Help? Read Itarrow_forwardA 6.0 ✕ 104 kg space probe is traveling at a speed of 12000 m/s through deep space. Retrorockets are fired along the line of motion to reduce the probe's speed. The retrorockets generate a force of 3.0 ✕ 105 N over a distance of 2400 km. What is the final speed of the probe? m/sarrow_forwardA railroad cart with a mass of m₁ = 12.6 t is at rest at the top of an h = 10.3 m high hump yard hill. m m₂ h After it is pushed very slowly over the edge, it starts to roll down. At the bottom it hits another cart originally at rest with a mass of m₂ = 18.6 t. The bumper mechanism locks the two carts together. What is the final common speed of the two carts? (Neglect losses due to rolling friction of the carts. The letter t stands for metric ton in the SI system.)arrow_forward
- Gayle runs at a speed of 3.65 m/s and dives on a sled, initially at rest on the top of a frictionless snow-covered hill. After she has descended a vertical distance of 5.00 m, her brother, who is initially at rest, hops on her back and together they continue down the hill. What is their speed at the bottom of the hill if the total vertical drop is 15.0 m? Gayle's mass is 48.0 kg, the sled has a mass of 5.45 kg and her brother has a mass of 30.0 kg. m/sarrow_forwardA baseball has a mass of 0.140 kg, and it is pitched towards home plate at a speed of 48.0 m/s. Assume that the ball is pitched horizontally and that the ball is hit horizontally back in the opposite direction. If the bat exerts an average force of 9100 N for 2.80 ms, what is the final speed of the ball in m/s?arrow_forwardFigure P7.44 45. Review. Two constant forces act on an object of mass m = QIC 5.00 kg moving in the xy plane as shown in Figure P7.45. Force F, is 25.0 N at 35.0°, and force F, is 42.0 N at 150°. At time t = 0, the object is at the origin and has velocity (4.00î + 2.50j) m/s. (a) Express the two forces in unit-vector notation. Use unit-vector notation for your other answers. (b) Find the total force exerted on the object. (c) Find the object's acceleration. Now, considering the instant t = 3.00 s, find (d) velocity, (e) its position, its kinetic energy the object's (f) from mv, and (g) its F2 F kinetic from 150° energy mu + EF · A. (h) What conclusion can you draw by comparing the answers to parts (f) and (g)? 35.0° m Figure P7.45arrow_forward
- 27arrow_forwardA 66.0-kg athlete leaps straight up into the air from a trampoline with an initial speed of 7.5 m/s. The goal of this problem is to find the maximum height she attains and her speed at half maximum height. (a) What are the interacting objects and how do they interact? This answer has not been graded yet. (b) Select the height at which the athlete's speed is 7.5 m/s as y = 0. What is her kinetic energy at this point? JWhat is the gravitational potential energy associated with the athlete? J(c) What is her kinetic energy at maximum height? JWhat is the gravitational potential energy associated with the athlete? J(d) Write a general equation for energy conservation in this case and solve for the maximum height. Substitute and obtain a numerical answer. m(e) Write the general equation for energy conservation and solve for the velocity at half the maximum height. Substitute and obtain a numerical answer. m/sarrow_forwardGayle runs at a speed of 3.60 m/s and dives on a sled, initially at rest on the top of a frictionless snow - covered hill. After she has descended a vertical distance of 5.00 m, her brother, who is initially at rest, hops on her back and together they continue down the hill. What is their speed at the bottom of the hill if the total vertical drop is 15.0 m? Gayle's mass is 46.5 kg, the sled has a mass of 5.10 kg and her brother has a mass of 30.0 kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON