A table of values for f, g, f', and g' is given. X -8 -7 -6 f(x) g(x) f'(x) g'(x) -6 -8 -2 -7 -1 -7 (a) If h(x) = f(g(x)), find h'(-8). h'(-8)= (b) If H(x) = g(f(x)), find H'(-8). H'(-8) = -3 -4 -2 -9 -2 0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Q13
**Table of Values for \( f, g, f', \) and \( g' \)**

The following table provides values for functions \( f(x) \), \( g(x) \), and their derivatives \( f'(x) \), \( g'(x) \) at specific points \( x \).

| \( x \) | \( f(x) \) | \( g(x) \) | \( f'(x) \) | \( g'(x) \) |
|--------|--------|--------|---------|---------|
| -8     | -6     | -7     | -3      | -9      |
| -7     | -8     | -1     | -4      | -2      |
| -6     | -2     | -7     | -2      | 0       |

**Problems**

(a) If \( h(x) = f(g(x)) \), find \( h'(-8) \).

\( h'(-8) = \_\_\_\_ \)

(b) If \( H(x) = g(f(x)) \), find \( H'(-8) \).

\( H'(-8) = \_\_\_\_ \)

**Explanation of Problems**

- Use the chain rule for differentiation to find the derivatives of the compositions.
- For (a), calculate \( h'(-8) \) using \( h(x) = f(g(x)) \).
- For (b), calculate \( H'(-8) \) using \( H(x) = g(f(x)) \).
Transcribed Image Text:**Table of Values for \( f, g, f', \) and \( g' \)** The following table provides values for functions \( f(x) \), \( g(x) \), and their derivatives \( f'(x) \), \( g'(x) \) at specific points \( x \). | \( x \) | \( f(x) \) | \( g(x) \) | \( f'(x) \) | \( g'(x) \) | |--------|--------|--------|---------|---------| | -8 | -6 | -7 | -3 | -9 | | -7 | -8 | -1 | -4 | -2 | | -6 | -2 | -7 | -2 | 0 | **Problems** (a) If \( h(x) = f(g(x)) \), find \( h'(-8) \). \( h'(-8) = \_\_\_\_ \) (b) If \( H(x) = g(f(x)) \), find \( H'(-8) \). \( H'(-8) = \_\_\_\_ \) **Explanation of Problems** - Use the chain rule for differentiation to find the derivatives of the compositions. - For (a), calculate \( h'(-8) \) using \( h(x) = f(g(x)) \). - For (b), calculate \( H'(-8) \) using \( H(x) = g(f(x)) \).
Expert Solution
Step 1: The given information is

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning