Question
a system of particles at room temperature (300K), what value must & be before the Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann distributions agree within 0.1% ? Justify your answer.
Expert Solution
arrow_forward
Step 18
Determine,
The value for Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann distributions agree within 0.1%
Step by stepSolved in 3 steps
Knowledge Booster
Similar questions
- Imagine a photon gas at an initial temperature of T = 1.4 K. What is the temperature of the photon gas (in K) after it has undergone a reversible adiabatic expansion to 2 times its original volume?arrow_forwardConsider a system with 1000 particles that can only have two energies, ɛ, and with ɛ, > E,. The difference between these two values is Aɛ = ɛ, -& . Assume that gi = g2 = 1. Using the %3D %3D equation for the Boltzmann distribution graph the number of particles, ni and m, in states & n2, E and E, as a function of temperature for a Aɛ = 1×10-2' J and for a temperature range from 2 to 300 K. (Note: kg = 1.380x10-23 J K-!. %3D %3D (s,-s,) gLe Aɛ/ n2 or = e n,arrow_forwardNear the surface of a certain kind of star, approximately one hydrogen atom per 10 million is in the first excited level (n = 2). Assume that the other atoms are in the n = 1 level. Use this information to estimate the temperature there, assuming that Maxwell-Boltzmann statistics are valid.arrow_forward
- Plot the Fermi-Dirac probability of occupation function fFD(E) for T = 0, 10, 100, 200, 300 and 400K.arrow_forwardFor a gas of nitrogen (N2) at room temperature (293 K) and 1 atmosphere pressure, calculate the Maxwell-Boltzmann constant A and thereby show that Bose-Einstein statistics can be replaced by Maxwell-Boltzmann statistics in this case.arrow_forwardConsider a molecular two-level system with a twofold degenerate ground state (la- beled "0") and a threefold degenerate level (labeled “1") with an energy (expressed in wavenumbers) 150.0 cm-1 above the ground state. (a) What is the proportion N1/N of molecules in the higher level at T = 400 K? (b) What is the molecular average energy (relative to the ground state and expressed in wavenumbers) when the temperature is T = 400 K? (c) What is the proportion No/N of molecules in the ground state when T → 0K? (d) What is the proportion N1/N of molecules in the higher level when T → x?arrow_forward
arrow_back_ios
arrow_forward_ios