MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A student used multiple
ANOVA |
|
|
|
df |
SS |
Regression |
3 |
45.9634 |
Residual |
11 |
2.6218 |
Total |
|
|
|
Coefficients |
Standard Error |
Intercept |
0.0136 |
|
x1 |
0.7992 |
0.074 |
x2 |
0.2280 |
0.190 |
x3 |
-0.5796 |
0.920 |
- Write out the estimated regression equation for the relationship between the variables.
- Compute coefficient of determination. Can you interpret the strength of the relationship?
- Carry out a test to determine whether y is significantly related to the independent variables. Use a 5% level of significance.
- Carry out a test to see if x3 and y are significantly related. Use a 5% level of significance.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- A regression analysis was performed to predict weight (y, in kg) using height (x, in cm) among 150 children. The coefficient of determination was . Which of the following is a valid interpretation? a. For each 1-cm increase in height, weight tends to increase by about 0.32 kg b. There is no association between weight and height c. Height accounts for about 32% of the total variability in weight d. The correlation between weight and height is about 0.32arrow_forwardA student used multiple regression analysis to study how family spending (y) is influenced by income (x) family size (x2), and addition to savings(x3). The variables y, x1, and x3. The variables y, x1, and x3 are measured in thousands of dollars . The following results were obtained. ANOVA df SS Regression 3 45.9634 Residual 11 2.6218 Total Coefficient Standard Error Intercept 0.0136 X1 0.7992 0.074 X2 0.2280 0.190 X3 -0.5796 0.920 Write out the estimated regression equation for the relationship between the variables. Compute coefficient of determination. What can you say about the strength of this relationship? Carry out a test to determine whether y is significantly related to the independent variables. Use a 5% level of significant. Carry out a test to see if X3 and y are significantly related. Use a 5% level of significancearrow_forwardYou believe that the price of Zoom Videoconferencing stock and the price of American Airlines stock will move in opposite directions. In order to test this relationship, we do a simple regression with the following variables:A - dependent variable : month end price of American Airlines stockZ - independent variable: month end price of Zoom Videoconferencing stock Data from April 2019 through December 2020 (21 observations) is availableBased on the data, we compute the following:Var (Z) = 20927.702Cov (A,Z) = -899.153E(A) = 20.790E(Z) = 187.530Std Error of Estimate = 6.088TSS = 1476.830 Consider the equation At = b0 + b1 Zt + εtBased on the numbers given above, complete the following table Variable Estimate Std error t-statistic Slope b1 .00941 Constant b0 2.2088 R-square N/A N/A F statistic N/A N/A Are the coefficients (slope and/or constant) significant at the .05 level?arrow_forward
- Do movies of different types have different rates of return on their budgets? Here's a regression of USGross (SM) on Budget for comedies and action movies with an indicator variable. Complete parts (a) through (d). Dependent variable is: USGross ($M) Coefficient SE(Coeff) - 6.78278 16.95 1.00523 Variable Constant Budget ($M) Comedy 24.0373 0.1613 11.73 t-ratio P-value -0.400 0.6907 6.23 <0.0001 2.05 0.0451 a) Write out the regression model. USGross = + ( Budget + (Comedy R-squared = 32.8% R-squared (adjusted) = 31.0% s = 47.51 55 degrees of freedomarrow_forwardA student used multiple regression analysis to study how family spending (y) is influenced by income (x1), family size (x2), and additions to savings(x3). The variables y, x1, and x3 are measured in thousands of dollars. The following results were obtained. ANOVA df SS Regression 3 45.9634 Residual 11 2.6218 Total Coefficients Standard Error Intercept 0.0136 x1 0.7992 0.074 x2 0.2280 0.190 x3 -0.5796 0.920 Write out the estimated regression equation for the relationship between the variables. Compute coefficient of determination. What can you say about the strength of this relationship? Carry out a test to determine whether y is…arrow_forwardThe local utility company surveys 12 randomly selected customers. For each survey participant, the company collects the following: annual electric bill (in dollars) and home size (in square feet). Output from a regression analysis appears below: Bill 13.45 + 4.39*Size Coefficients Estimate Std. Error (Intercept) 13.45 Size 4.39 0.54 0.2 We are 90% confident that the mean annual electric bill increases by between dollars and dollars for every additional square foot in home size. Round your answers to three decimal places and enter in increasing order.arrow_forward
- An automobile rental company wants to predict the yearly maintenance expense (Y) for an automobile using the number of miles driven during the year () and the age of the car (, in years) at the beginning of the year. The company has gathered the data on 10 automobiles and run a regression analysis with the results shown below:. Summary measures Multiple R 0.9689 R-Square 0.9387 Adj R-Square 0.9212 StErr of Estimate 72.218 Regression coefficients Coefficient Std Err t-value p-value Constant 33.796 48.181 0.7014 0.5057 Miles Driven 0.0549 0.0191 2.8666 0.0241 Age of car 21.467 20.573 1.0434 0.3314 Use the information above to estimate the annual maintenance expense for a 10 years old car with 60,000 miles.arrow_forwardA simple linear regression model was created to examine the relationship between the age of patients in years (i.e. the independent variable) and the patients' scores on a questionnaire that measures quality of life (i.e. the dependent variable). There were n=20 patients in the study, and some of the results of the regression are presented below: Estimated slope = -0.64 Standard error of the slope = 0.52 Estimated intercept = 42.0 Standard error of the intercept = 13.6 Based on these results, what would be the expected quality of life score for a patient who is 30 years old? Question 3 options: 61.2 22.8 1260.64 29.2arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman