A string with a mass density mu = 6.40e-03 kg/m is under a tension of F = 259 N and is fixed at both ends. One of its resonance frequencies is 622.0 Hz. The next higher resonance frequency is 777.5 Hz. What is the fundamental frequency of this string? Which harmonic does the resonance frequency at 622.0 Hz correspond to? (i.e. what is n at this frequency?) What is the length of the string? Now, suppose the same string is detached at one end and connected by a ring to a frictionless post, so that it can move freely. Find the wavelength of the first (fundamental) harmonic. What is the frequency of the third (n = 3) harmonic in this case?

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter18: Superposition And Standing Waves
Section: Chapter Questions
Problem 17PQ: A standing wave on a string is described by the equation y(x, t) = 1.25 sin(0.0350x) cos(1450t),...
icon
Related questions
Question
100%
A string with a mass density mu = 6.40e-03 kg/m is under a tension of F = 259 N and is fixed at both ends. One of its resonance
frequencies is 622.0 Hz. The next higher resonance frequency is 777.5 Hz. What is the fundamental frequency of this string?
Which harmonic does the resonance frequency at 622.0 Hz correspond to? (i.e. what is n at this frequency?)
What is the length of the string?
Now, suppose the same string is detached at one end and connected by a ring to a frictionless post, so that it can move freely. Find the
wavelength of the first (fundamental) harmonic.
What is the frequency of the third (n = 3) harmonic in this case?
Transcribed Image Text:A string with a mass density mu = 6.40e-03 kg/m is under a tension of F = 259 N and is fixed at both ends. One of its resonance frequencies is 622.0 Hz. The next higher resonance frequency is 777.5 Hz. What is the fundamental frequency of this string? Which harmonic does the resonance frequency at 622.0 Hz correspond to? (i.e. what is n at this frequency?) What is the length of the string? Now, suppose the same string is detached at one end and connected by a ring to a frictionless post, so that it can move freely. Find the wavelength of the first (fundamental) harmonic. What is the frequency of the third (n = 3) harmonic in this case?
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Interference of sound
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University