College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A string on the violin has a length of 23.00 cm and a mass of 0.900 grams. The tension in the string 850.00 N. The temperature in the room is TC = 24.00°C. The string is plucked and oscillates in the n = 9 mode. (a) What is the speed of the wave on the string? (b) What is the wavelength of the sounding wave produced? (c) What is the frequency of the oscillating string? (d) What is the frequency of the sound produced? (e) What is the wavelength of the sound produced?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please asaparrow_forwardConsider a wave described by the function y(x, t) = (0.30 m) sin(2.00 m-1 – 628s-t) (a) What is the amplitude of the wave? (b) What is the speed of the wave?arrow_forwardA string fixed at both ends is 8.8 m long and has a mass of 0.17 kg. It is subjected to a tension of 120 N and set oscillating. (a) What is the speed of the waves on the string? (b) What is the longest possible wavelength for a standing wave? (c) Give the frequency of that wave.arrow_forward
- The tension in a wire clamped at both ends is increased to 5.1 times its original magnitude without appreciably changing the wire's length between the clamps. What is the ratio of the new to the old wave speed for transverse waves traveling along this wire?arrow_forwardA stretched string is 2.00 m long and has a mass of 18.0 grams. When the stringoscillates at 440 Hz, periodic transverse waves travel along the string. (a) Calculate the mass density of the string in kg/m. (b)If the tension in the string is 32.4 N, what is the wave speed in m/s? (c) What is the wavelength of the wave for such a mode?arrow_forwardA source vibrating with a frequency of 150 Hz creates a standing wave in a string of length 73 cm. There are nine nodes in the string, including one at each end. (a) What is the wavelength of the waves in the string? (b) What is the speed of the waves in the string?arrow_forward
- Transverse waves on a string have wave speed 8.00 m/s, amplitude 0.0700 m, and wavelength 0.320 m. These waves travel in the x direction, and at t=0 the x=0 end of the string is at y=0 and moving downward. Find the frequency and the period of these waves.arrow_forwardA string with a linear density of 2 kg/m is stretched to a length of 0.3 meters and fastened at both end so that it can freely vibrate. The tension on the string is 1800 Newtons.At what speed would a wave propagate on this string? (calculate in m/s)arrow_forwardTwo children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 4.9 m long, its mass is 0.58 kg, and the force exerted on it by the children is 53 N. (a) What is the linear mass density of the rope (in kg/m)? kg/m (b) What is the speed of the waves on the rope (in m/s)? m/sarrow_forward
- A string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forwardA wave, propagating along the x direction according to Equation (x, t) = A sin(kx - vt + f) , has a maximum displacement of 4.0 cm at x = 0 and t =0. The wave speed is 5.0 cm/s, and the wavelength is 7.0 cm. (a) What is the frequency? (b) What is the wave’s amplitude at x =10 cm and t =13 s?arrow_forwardFor a string stretched between two supports, two successive standing-wave frequencies are 535Hz and 615 Hz. There are other standing-wave frequencies lower than 535 Hz and higher than 615 Hz. If the speed of transverse waves on the string is 358 m/s, what is the length of the string? Assume that the mass of the wire is small enough for its effect on the tension in the wire to be neglected.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON