College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A standing wave is created on a slinky using a frequency of 1.86 Hz. If the speed of the wave down the slinky is 1.42 m/s, how far apart will the nodes on the slinky be?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The depth to an unusual layer of rock is to be determined at a particular place by bouncing an artificially generated seismic wave off it and receiving the echo at the surface. When this is done, the depth is given by the equation, h = (1/2) v t, in which h is the depth, v is the average velocity of the seismic wave, and t is the time that it takes for the wave to go down to the rock layer and return to the surface. If t = 0.350 +/- 0.10, and v = 2,000 +/- 10. meters per second, what is the possible error in the depth. (Show your work, and remember to express your results in the correct number of significant figures.)arrow_forwardA transverse wave travels across a string having a linear mass density 0.065 kg/m. The wavelength of the wave is measured to be 0.71 m and the frequency is 52.5 Hz. What is the tension in the string?arrow_forwardTwo sinusoidal waves in a string are defined by the wave functions Yn = 2.00 sin(20.0r – 32.01) Y = 2.00 sin(25.0r – 40.0t) where r, y1 and y2 are in centimeters, t is in seconds and the angles are measured in radians. (a) What is the phase difference between these two waves at the point r = 5.00 cm at t = 2.00 s. Give your final answer in degrees between 0° and 360°. (b) What is the positive a value closest to the origin for which the two phases differ by +r at t = 2.00 s resulting in a zero displacement? Show all your workings and explain your reasoning.arrow_forward
- A violin string with mass 0.35g is 35cm long. The frequency of a wave supported by the string is 196hz. a) Assuming that this wave is a findamental frequency, what is the speed of the wave? b) What's the linear density of the string? c) Whats the tension in the string?arrow_forwardA string of length L is under tension, and the speed of a wave in the string is 58 m/s. What will be the speed of a wave in the string, in m/s, if the length is doubled but with no change in the mass or tension?arrow_forwardTwo progressive waves yj = A sin( 4 x - ot) and y2 = A sin( 2" x – ot – 5) travel in the same direction. Calculate the velocity of the wave produced as a result of interference of these two waves. Take A = 5 cm, 1 =8.7 m and w =12.7 rad/s (radian per second). Give your answer in Sl units.arrow_forward
- Write a wave function describing the wave.arrow_forwardTransverse waves on a string have a velocity of 15 m/s, amplitude of 0.10m and a wavelength of 25 cm. The waves travel in the +x direction and at t=0 the x=0 end of the string is at a maximum upward displacement. Find the wave number of the wave (m):arrow_forwardA harmonic wave travels down a string under 60 N of tension with a mass per unit length of 0.400 kg/m. The wave has an amplitude of 3.00 cm, and a wavelength of 1.40 m. What is the average power transferred by the wave? (Give your answer in W.)arrow_forward
- A string with total length 10 m and mass 200 g is connected to two poles. The tension in the string is 2 N, and the wind makes the string vibrate with a frequency of 2 Hz. Calculate the wavelength of the resulting wave on the string.arrow_forwardFor an aluminium the modulus of rigidity is 2.1×1010 N/m2 and density is 2.7×103 kg/m3. Find the speed of transverse waves in the medium. a) 27.9×103 m/s b) 2.79×103 m/s c) 25.14×103 m/s d) 24.1×103 m/sarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON