Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question

Please answer correctly following the same format as the questions. Box the correct answer and I will give a thumbs up if the answer is correct, a thumbs down if answer is incorrect.

Chapter 4.1 Question 6

Please give me the correct answer for red box.

A square matrix A is idempotent if A² = A.
Let V be the vector space of all 2 × 2 matrices with real entries. Let H be the set of all 2 × 2 idempotent matrices with real entries. Is H a subspace of the vector space V?
1. Does H contain the zero vector of V?
H contains the zero vector of V
2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two matrices in H whose sum is not in H, using a comma separated list and syntax such as
[[1,2], [3,4]], [[5,6], [7,8]] for the answer
[16] (Hint: to show that H is not closed under addition, it is sufficient to find two idempotent matrices A and B such
that (A + B)² + (A + B).)
([1,0], [0,1]), ([1,0],[0,1])
3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a matrix in H whose product is not in H, using a comma separated list and syntax
[3
such as 2, [[3,4], [5,6]] for the answer 2, (Hint: to show that H is not closed under scalar multiplication, it is sufficient to find a real number r and an idempotent matrix
5
A such that (rA)2 ‡ (rA).)
([1,0], [0,1])
4. Is H a subspace of the vector space V? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3.
H is not a subspace of V
expand button
Transcribed Image Text:A square matrix A is idempotent if A² = A. Let V be the vector space of all 2 × 2 matrices with real entries. Let H be the set of all 2 × 2 idempotent matrices with real entries. Is H a subspace of the vector space V? 1. Does H contain the zero vector of V? H contains the zero vector of V 2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two matrices in H whose sum is not in H, using a comma separated list and syntax such as [[1,2], [3,4]], [[5,6], [7,8]] for the answer [16] (Hint: to show that H is not closed under addition, it is sufficient to find two idempotent matrices A and B such that (A + B)² + (A + B).) ([1,0], [0,1]), ([1,0],[0,1]) 3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a matrix in H whose product is not in H, using a comma separated list and syntax [3 such as 2, [[3,4], [5,6]] for the answer 2, (Hint: to show that H is not closed under scalar multiplication, it is sufficient to find a real number r and an idempotent matrix 5 A such that (rA)2 ‡ (rA).) ([1,0], [0,1]) 4. Is H a subspace of the vector space V? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3. H is not a subspace of V
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,