
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Please answer correctly following the same format as the questions. Box the correct answer and I will give a thumbs up if the answer is correct, a thumbs down if answer is incorrect.
Chapter 4.1 Question 6
Please give me the correct answer for red box.
![A square matrix A is idempotent if A² = A.
Let V be the vector space of all 2 × 2 matrices with real entries. Let H be the set of all 2 × 2 idempotent matrices with real entries. Is H a subspace of the vector space V?
1. Does H contain the zero vector of V?
H contains the zero vector of V
2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two matrices in H whose sum is not in H, using a comma separated list and syntax such as
[[1,2], [3,4]], [[5,6], [7,8]] for the answer
[16] (Hint: to show that H is not closed under addition, it is sufficient to find two idempotent matrices A and B such
that (A + B)² + (A + B).)
([1,0], [0,1]), ([1,0],[0,1])
3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a matrix in H whose product is not in H, using a comma separated list and syntax
[3
such as 2, [[3,4], [5,6]] for the answer 2, (Hint: to show that H is not closed under scalar multiplication, it is sufficient to find a real number r and an idempotent matrix
5
A such that (rA)2 ‡ (rA).)
([1,0], [0,1])
4. Is H a subspace of the vector space V? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3.
H is not a subspace of V](https://content.bartleby.com/qna-images/question/725843fe-6d46-4a6d-8b3a-950af3990c4f/9e1839a9-291f-4e18-8dff-b7bf6c613325/ajce45p_thumbnail.png)
Transcribed Image Text:A square matrix A is idempotent if A² = A.
Let V be the vector space of all 2 × 2 matrices with real entries. Let H be the set of all 2 × 2 idempotent matrices with real entries. Is H a subspace of the vector space V?
1. Does H contain the zero vector of V?
H contains the zero vector of V
2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two matrices in H whose sum is not in H, using a comma separated list and syntax such as
[[1,2], [3,4]], [[5,6], [7,8]] for the answer
[16] (Hint: to show that H is not closed under addition, it is sufficient to find two idempotent matrices A and B such
that (A + B)² + (A + B).)
([1,0], [0,1]), ([1,0],[0,1])
3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a matrix in H whose product is not in H, using a comma separated list and syntax
[3
such as 2, [[3,4], [5,6]] for the answer 2, (Hint: to show that H is not closed under scalar multiplication, it is sufficient to find a real number r and an idempotent matrix
5
A such that (rA)2 ‡ (rA).)
([1,0], [0,1])
4. Is H a subspace of the vector space V? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3.
H is not a subspace of V
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Similar questions
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education

Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

