Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
A spherical vessel containing hot fluid at 160°C (in a chemical process) is of 0.4 m OD and is made of Titanium of 25 mm thickness. The thermal conductivity is 20 W/mK. The vessel is insulated with two layers of 5 cm thick insulations of thermal conductivities 0.06 and 0.12 W/mK. There is a contact resistance of 6 × 10–4 and 5 × 10–4 m2 °C/W between the metal and first insulation and between the insulating layers. The outside is exposed to surrounding at 30°C with a convection coefficient of 15 W/m2-K. Determine the rate of heat loss, the interface temperatures and the overall heat transfer coefficient based on the metal surface area.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- There is a 1.20-cm-thick stagnant air pocket. A) What thickness of cork would have the same R-factor as the stagnant air pocket? The thermal conductivity of air is 0.0230 W/m·K and of cork is 0.0460 W/m·K.in cm B) What thickness of tin would be required for the same R-factor as a 1.20-cm-thick stagnant air pocket? The thermal conductivity of air is 0.0230 W/m·K and of tin is 66.8 W/m·K . in m i asked how to do this but got the wrong soloutionarrow_forwardSteel pipe (outer diameter 100 mm) is covered with two layers of insulation. The inner layer, 40 mm thick, has a thermal conductivity of 0.07 W / (m K). The outer layer, 20 mm thick, has a thermal conductivity of 0.15 W / (m K). Pipes are used to deliver steam with a pressure of 600 kPa. The temperature on the outer insulation surface is 24 ° C. If the pipe is 8 m long, determine the following: (assuming that the conduction heat transfer resistance of the steel pipe and the vapor convection resistance are negligible). a. Heat loss per hour. = kJ / hour. b. Temperature between insulation layers. = ° Carrow_forwardA 1-in Sch 40 stainless steel pipe with a thermal conductivity of 45 W/m-K can move 1,000 kg of saturated steam per hour at 150 °C. Refractory material 0.25 inches thick with a thermal conductivity of 0.025 W/m-K insulates the pipe. At a temperature of 25 °C, the pipe is exposed to the outside air. There is a 1135 W/m2 internal heat transfer coefficient.40 W/m2-K is the outside heat transfer coefficient, whereas -K. Suppose that only the radial direction is involved in steady-state heat transfer and that radiation effects are negligible. ✓ Determine how much heat is being lost through these pipes to the environment.a. 399.1 W/mb. 1525.0 W/mc. 618.4 W/md. 1128.7 W/me. none of the above √ How about the insulated pipe's surface temperature?a. 118.5 °Cb. None of the abovec. 101.5 °Cd. 216.3 °Ce. 292.2 °Carrow_forward
- Approximately 106 discrete electrical components are placed on a single integrated circuit (chip) with electrical heat dissipation of q = 30,000 W/m². The chip, which is very thin, is exposed to a dielectric liquid at its outer surface, with ho = 450 W/m²/K and To= 20°C, and is joined to a circuit board at its inner surface. The thermal contact resistance between the chip and the board is R = 104 m² K/W, and the board thickness and thermal conductivity are L = 4 mm and 00,0 kb = 0.95 W/m/K, respectively. The other surface of the board is exposed to ambient air for which hi = 30 W/m²/K and T = 20°C. a) Provide a resistance diagram labeling appropriate variables associated with this problem. b) Determine a symbolic expression for the temperature of the chip T. c) Calculate the chip temperature for the given parameters. Coolant ho 00,01 Air Too,i hi 三 三 -Chip q Te -Thermal contact resistance, Re -Board, kparrow_forwardAnswer this ASAP,thx An empty sphere is made of aluminum (k = 202 W/m. °C) with an inner diameter of 4 cm and an outer diameter of 8 cm. The inside temperature is 100°C and If the ball above is coated with an insulating material having k = 50 mW/m. °C 1 cm thick. The outside of this insulation is in contact with an environment having h = 20 W/m.°C and Ts = 10°C, calculate the heat transfer under these conditions.arrow_forwardA semiconductor material has a conductivity of 0.0124 W/cm-K. It has the shape of a rectangular bar with cross sectional area of 1 cm2and length of 3 cm. One end is maintained at 300 °C and the other end at 100 °C. The bar carries a current of 50 A and has resistivity of 1.5x10-3ohm-cm. Assuming the longitudinal surface is insulated, calculated the midpoint temperature in the bar.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY