College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A spectrometer uses a specific light source and a grating that has a specification of 200/mm to split the light (find the distance between gap/lattice). The diffraction pattern seen on the screen is a colored fringe pattern like a rainbow.
(b) If the angle formed is between the first light and the reference angle is 25°, what is the wavelength the light source?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A laser delivers an irradiance of 105 W/cm2 in a certain target area. If you are working in this area and the MPE for this laser is given by Table 2-3 to be 0.005 W/cm2, what is the minimum OD for the laser goggles you should be wearing?arrow_forwardProblem 6: A red laser (1 = 597 nm) is incident on a diffraction grating that has n= 1100 lines per c Randomized Variables 1= 597 nm n = 1100 lines/cm Part (a) What is the angle, in radians, that the first order maximum makes, 0,? 61 = sin() cos() tan() 7 8 HOME cotan() asin() acos) E 4 5 6 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() END Degrees Radians VOl BACKSPACE CLEAR DEL Submit Hint Feedback I give up! Part (b) What is the angle of the fourth order maximum, O4, in radians? +arrow_forwardA fiber laser (λ = 1.06 μm) has an output beam diameter of 1 cm. Find the diffraction limited spot size if the beam is focused by a lens with a 6 cm focal lengtharrow_forward
- A wide beam of light from a laser with a wavelength of 525.0 nm is incident on a long narrow opening that is 0.250 mm wide. What will be the width, in mm, of the central maximum on a screen 2.00 m from the opening (i.e what will be the distance between the nodes adjacent to the central maximum?) (Use the small angle approximation.)arrow_forwardIs it possible to produce interference effect between the o-ray beam and e-ray beam, which are separated by a calcite crystal from a unpolarized incident beam by recombining them? Explain your answer with proper justification.arrow_forwardAn X-ray beam of wavelength 8.9 × 10-10 m makes an angle of 29° with a set of planes in a crystal which results in first order constructive interference. Determine the plane spacing in nanometers. (Please include 2 decimal places).arrow_forward
- In a certain photo-chemical experiment, the light from a sodium lamp at 589.0 nmneeds to be diffracted at an angle of 55 degrees in thesecond diffraction order. Howmany lines/mm would your grating need to have in orderto do this?arrow_forwardYou measure the distance between the finges of a diffraction pattern as follows: Distance (mm): 3.01, 3.27, 3.28 You measure the distance eight additional times to obtain the following ten values: Distance (mm): 3.01, 3.27, 3.28, 3.31, 3.16, 3.17, 3.15, 3.25, 3.18, 1.46 What values for the distance and uncertainty would you report using the first three measurements and the entire set of ten measurements? Group of answer choices First three: (3.22 ± 0.03) mm, All ten: (3.22 ± 0.02) mm First three: (3.19 ± 0.09) mm, All ten: (3.0 ± 0.2) mm First three: (3.186667 ± 0.07216237) mm, All ten: (3.201000 ± 0.02613236) mm First three: (3.216667 ± 0.02880329) mm, All ten: (3.216000 ± 0.02379916) mm First three: (3.240000 ± 0.04082483) mm, All ten: (3.217000 ± 0.02702036) mm First three: (3.24 ± 0.04) mm, All ten: (3.22 ± 0.03) mmarrow_forwardThe dispersion curve of glass is the curve that describes how the index of refraction of glass changes as a function of the wavelength. This curve can be represented approximately by Cauchy's empirical equation, n = A + B/2² where for a specific glass in question A = 1.40 and B = 2.5 × 10 nm² (yes, those units are nanometer squared). Find the phase and group velocities for light of 500nm wavelength in that glass.arrow_forward
- An X-ray beam of wavelength 3.4 × 10-10 m makes an angle of 33° with a set of planes in a crystal which results in first order constructive interference. Determine the plane spacing in nanometers. (Please include 2 decimal places).arrow_forwardSuppose that a thin piece of glass were placed in front of the lower slit in a double-slit apparatus so that the amplitude for a photon of wavelength λ to reach that slit differs in phase by 180 degrees with the amplitude to reach the top slit. What is the minimum thickness of the glass required, assuming the index of refraction for the glass is n?arrow_forwardYoung's experimental setup can be used to monitor the width of the lead wires in transistors. The cables are placed in a narrow opening as shown in the figure. The opening is illuminated with highly coherent light. The position of the tenth maximum is measured on a screen located at 0.5m. The expected diameter of the wires is 0.100±0.005 mm. (a) What is the maximum deviation that the position of the tenth maximum can have so that the cable has an acceptable diameter? What would happen if the first maximum was used as the criterion, would the decision be easier or more difficult?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON