College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A solid, horizontal cylinder of mass 10.0 kg and radius 1.00 m
rotates with an angular speed of 7.00 rad/s about a fixed
vertical axis through its center. A 0.250-kg piece of putty is
dropped vertically onto the cylinder at a point 0.900 m from
the center of rotation and sticks to the cylinder. Determine
the final angular speed of the system.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniform solid disk of mass m = 3.03 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 6.07 rad/s. (a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of mass. kg · m2/s (b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between the center and the rim? kg · m2/s Need Help? Read Itarrow_forwardA perfectly elastic ball bounces against a surface with a velocity vo = 2.4 m/s at an angle 0o = 45 degrees to the vertical. As a result of the impact, the ball bounces upward at an angle 0₁ = 23.2 degrees but also gains a topspin w₁ = 152 rad/s due to the rough surface. The ball has mass m = 10 grams and radius R = 16 mm. The moment of inertia of a solid sphere is /G = (2 m R²) / 5. The coefficient of restitution for the impact e = 1, so that energy can be assumed to be conserved during impact. g W₁ = 0 Vo 0₁ W₁ Calculate the magnitude of the velocity v₁ of the ball after impact. Ov=2.85 m/s O V = 2.4 m/s O V = 1.84 m/s O V = 1.67 m/s V₁arrow_forwardA solid, horizontal cylinder of mass 11.2 kg and radius 1.00 m rotates with an angular speed of 7.50 rad/s about a fixed vertical axis through its center. A 0.250-kg piece of putty is dropped vertically onto the cylinder at a point 0.900 m from the center of rotation and sticks to the cylinder. Determine the final angular speed of the system.arrow_forward
- two uniform solid spheres,A and B have the same mass.Each spbere,A and B has their own axis of rotation,the radius of sohere B is twice of sphere A.Which one of the following is true? (give I = 2/5mr^2) a)the moment of inertianof A IS 1/2 B b)the moment of inertianof A is 5/2 of B c) the moment of inertia of A is 1/4 B d)the two spheres have equal moments of inertiaarrow_forwardThe figure shows a small particle of mass 0.278 kg that is moving with a speed of 7.29 m/s when it collides and sticks the the edge of a uniform solid cylinder. The cylinder is free to rotate about an axis through its center. The cylinder has a mass of 2.677 kg, and a radius of 0.28 m, and is initially at rest. What is the angular velocity of the system after the collision? Express your answer in radians/s to 3 significant figures. Before Afterarrow_forwardA woman with mass 50 kg is standing on the rim of a large horizontal disk that is rotating at 0.80 rev/s about an axis through its center. The disk has mass 110 kg and radius 4.1 m. Calculate the magnitude of the total angular momentum of the woman–disk system. (Assume that you can treat the woman as a point.)arrow_forward
- A small Particle of mass 50 gram fired horizontally at a speed of 8 m/s . When it collides and embedded to the edge of a uniform solid cylinder who is initially at rest, the cylinder rotates freely about its axis through its center perpendicular to the page. If the cylinder has a mass of 0.6 kg and a radius of 20 cm, How much kinetic energy is lost in the collision? After Before O A. 1.4 J OB. 2.8 J О С. 3.2 J O D. 4.4 J O E. 1Jarrow_forward5arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON