College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
a solid brass
ball of mass 0.280 g will roll
smoothly along a loop-the-loop
track when released from rest along
the straight section. The circular
loop has radius R = 14.0 cm, and the
ball has radius r < R. (a) What is h if
the ball is on the verge of leaving
the track when it reaches the top of
the loop? If the ball is released at
height h = 6.00R, what are the (b)
magnitude and (c) direction of the
horizontal force component acting
on the ball at point Q?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A spring with spring constant k and equilibrium length zero is attached tothe top of a frictionless hoop of radius R. The spring is stretched and connected to a bead of mass m at the bottom of the hoop. At t = 0 the bead is given an initial speed v0 and the bead moves up the hoop. Find the speed of the bead as a function of position on hoop v(θ).arrow_forwardA mass m = 77 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius R = 19.9 m and finally a flat straight section at the same height as the center of the loop (19.9 m off the ground). Since the mass would not make it around the loop if released from the height of the top of the loop (do you know why?) it must be released above the top of the loop-the-loop height. (Assume the mass never leaves the smooth track at any point on its path.) ) What is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? m/s What height above the ground must the mass begin to make it around the loop-the-loop? m If the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? m/s If the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the…arrow_forwardNZM.11 An unpowered roller-coaster car starts at rest at the top of a hill of height H, rolls down the hill, and then goes around a vertical loop of radius R. Determine the minimum value for H required if the car is to stay on the track at the top of the loop. (Hints: At the top of the loop, the car is upside down. If it is in contact with the track, though, the contact interaction will exert a normal force on the car perpendicular to the track and away from the track, since the normal force is a compression force. You may find it helpful to use conservation of energy here.)arrow_forward
- A thin rod of length 0.632 m and mass 66.5 g is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed 1.35 rad/s. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.arrow_forwardPlease asap ?arrow_forwardA bowling ball, whose radius R is 11 cm and whose mass is 7.2 kg. rolls from rest down a plank whose length L is 2.1 m. the plank is inclined at an angle φ of 34 degrees to the horizontal. How fast is the ball moving when it reaches the bottom of the plank? please can you show the answer in hand written formarrow_forward
- The system is released from rest with the spring initially stretched 2.8 in. Calculate the velocity v of the cylinder after it has dropped 1.5 in. The spring has a stiffness of 4.1 lb/in. Neglect the mass of the small pulley. k = 4.1 lb/in 80 lbarrow_forwardOne end of a cord is fixed and a small 0.400-kg object is attached to the other end, where it swings in a section of a vertical circle of radius 1.50 m, as shown in the figure below. When θ = 23.0°, the speed of the object is 5.50 m/s. An object is swinging to the right and upward from the end of a cord attached to a horizontal surface. The cord makes an angle θ with the vertical. An arrow labeled vector v points in the direction of motion. (a) At this instant, find the magnitude of the tension in the string.Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. N(b) At this instant, find the tangential and radial components of acceleration. at = Your response differs from the correct answer by more than 100%. m/s2 downward tangent to the circle ac = Your response differs from the correct answer by more…arrow_forwardPoint A of the circular disk is at the angular position 0 = 0 at time t = 0. The disk has angular velocity wo = 0.29 rad/s at t = 0 and subsequently experiences an angular acceleration a = 1.8t where t is in seconds, and a is in radians per second squared. Determine the velocity and acceleration of point A in terms of fixed i and j unit vectors at time t = 2.7 s. Assumer = 145 mm. α Answers: VA = aд = 90 (i ( i 0 6.806 i + i + i i 1 0.705 j) m/s j) m/s²arrow_forward
- When a 3 kg mass is hung on a vertical spring, it extends the spring by 3.00 m. What is the angular velocity ω (in rads/s) of the mass when it oscillates back and forth on this spring?arrow_forwardMehularrow_forwardA thin rod of length 1.40 m and mass 189 g is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed 4.66 rad/s. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises. (a) Number (b) Number Units Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON