College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
A solenoid is made from a 25-m length of wire of resistivity
2.3 * 10-8 Ω # m. The wire, whose radius is 2.1 mm, is wrapped
uniformly onto a plastic tube 4.5 cm in diameter and 1.65 m long.
Find the emf to which the ends of the wire must be connected to
produce a magnetic field of 0.015 T within the solenoid.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 8 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- t is desired to construct a solenoid that will have a resistance of 4.50 Ω (at 20°C) and produce a magnetic field of 4.00 ✕ 10−2 T at its center when it carries a current of 3.75 A. The solenoid is to be constructed from copper wire having a diameter of 0.500 mm. If the radius of the solenoid is to be 1.00 cm, determine the following. (The resistivity of copper at 20°C is 1.7 ✕ 10−8 Ω · m.) (a) the number of turns of wire needed to build the solenoid Your response differs from the correct answer by more than 10%. Double check your calculations. turns(b) the length the solenoid should have cmarrow_forwardIn an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.440 cm thick is positioned along an east-west direction. Assume n = 8.46 x 1028 electrons/m³ and the plane of the bar is rotated to be perpendicular to the direction of B. If a current of 8.00 A in the conductor results in a Hall voltage of 5.80 x 1012 v, what is the magnitude of the Earth's magnetic field at this location? 0.0431 Your response is off by a multiple of ten. µTarrow_forwardAt a certain place, Earth’s magnetic field has magnitude B = 0.590 gauss and is inclined downward at an angle of 70.0 to the horizontal. A flat horizontal circular coil of wire with a radius of 10.0 cm has 1000 turns and a total resistance of 85.0 . It is connected in series to a meter with 140 ohm resistance.The coil is flipped through a half-revolution about a diameter, so that it is again horizontal. How much charge flows through the meter during the flip?arrow_forward
- The 12.0 cm long rod as shown moves at 4.00 m/s.What is the strength of the magnetic field if a 95.0 V emf isinduced?arrow_forward1. A 11.8 ?F capacitor is charged by a 25.0 V battery through a resistance R. The capacitor reaches a potential difference of 4.00 V at a time 3.00 s after charging begins. Find R. ________ kΩ 2.A proton moves perpendicular to a uniform magnetic field at a speed of 1.20 107 m/s and experiences an acceleration of 1.40 1013 m/s2 in the positive x-direction when its velocity is in the positive z-direction. Determine the magnitude and direction of the field. magnitude _______ PLEASE ANSWER BOTHarrow_forwardTwo long straight wires enter a room through a door. One carries a current of 3.0 A into the room while the other carries a current of 5.0 A out. What is the magnitude of the path integral $B ds around the door frame? O 6.3 x 10-6 T-m O 2.5 x 10-6 T-m O 3.8 x 10-6 T-m O None of these O 1.0 x 10-6 T-marrow_forward
- An intrepid physics student transports a loop of wire from their hometown all the way to Earth's north magnetic pole. The loop has a radius ofr = 50 cm and a total resistance 75 m2, and the plane of the loop is held parallel to the ground at all times. In their hometown, Earth's magnetic 35 µT and points slightly into the ground, making an angle of 0 = 15° with a line that points due north. At the north magnetic pole, Earth's magnetic field 60 µT and points directly into the ground. If the student completed this journey over the course 48 hours, then what was the average current induced in the loop? Provide both the magnitude and direction of the current (as viewed from above the loop), and include a sketch of the "initial" and "final" configurations as part of of R field has a magnitude of B; has a magnitude of Bf of t your representation.arrow_forwardThere are two concentric tungsten wire loops; a 4 cm radius loop and a 33 cm radius loop. The cross-sectional area of each wire is 0.009 m2. The current in the larger loop goes from 0 A to a counterclockwise 9 A in 5.9 10-4 s. Find the voltage & current in the smaller loop during the stated time interval. Assume the B-field of the larger loop is uniform (though not constant) across the smaller loop. V = I =arrow_forwardA square wire with 2 m sides is perpendicular to a uniform magnetic field, with half the area of the loop in the field as shown in the figure. The loop contains a 20 V battery with negligible resistance. If the magnitude of the field varies with time according to B = 1.1410 - 0.8500 t with B in teslas and t in seconds, what is the total emf in the circuit?arrow_forward
- 7 A Z S 30 H command 9. An electric power station that operates at 35 kV and uses a 10:1 step-up ideal transformer is producing 34 MW (Mega- Watt) of power that is to be sent to a big city which is located 300 km away with only 2.5% loss. Each of the two wires are made of copper (resistivity = 1.72 x 10-22.m). What is the diameter of the wires? X 0.85 cm x E 30 R 5 T 6 DEL LL B MacBook Air H N 8 J D 1 M ( 9 K MOSISO A P - command ? optionarrow_forwardIt is desired to construct a solenoid that will have a resistance of 4.65 N (at 20°C) and produce a magnetic field of 4.00 x 10-2T at its center when it carries a current of 3.85 A. The solenoid is to be constructed from copper wire having a diameter of 0.500 mm. If the radius of the solenoid is to be 1.00 cm, determine the following. (The resistivity of copper at 20°C is 1.7 x 10-8 n. m.) (a) the number of turns of wire needed to build the solenoid 853.2 v turns (b) the length the solenoid should have 426 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. cmarrow_forwardA rectangular slab (length 2.5 cm, width 1.5 cm, thickness 5.0 mm) of an unknown semiconductor with an unknown dopant was analyzed by placing it under a perpendicular magnetic field of strength 0.10 T in the +y direction, as well as subjecting it to a current of 7.5 A in the +x direction. A voltmeter measured that the potential on the top of the slab (as seen from the front) is 93.75 mV higher than the bottom. What is the majority charge carrier?Justify why.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON