
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Please show all your work and formulas used
![Unit Conversion Table
SI Prefixes and Dimensions Table
Angle
1 rad
e rad
SI Prefixes
Example: 1 milligram (mg]- 1 x 10 grams (gd
Power
I hp
57.3
deg
deg
745.7
Example: 1 Megajoule (MJ] - 1x 10 joules (J)
Numbers Greater Than One
180
3.412
BTU / h
Numbers Less Than One
0.00134
hp
cal / min
Prefix
Abbreviation
Prefix
Abbreviation
Area
1 W
Power of 10
Prefix
Power of 10
Prefis
14.34
4,047
m
t Ib /s
-1
deci-
1
deca
-
da
0.7376
1 acre
0.00156
mi
-2
centi-
hecto-
h
1 mi
640
acre
Pressure
3
milli-
3.
kilo-
k
m
1.01325
bar
r
Mega
Energy
1 BTU
33.9
t H0
-6
micro
6.
M
1,055.06
J
1 atm
29.92
in Hg
-9
nano
Giga-
I cal
4.184
J
760
mm Hg
-12
pico-
12
Tera-
т
0.239
cal
101,325
Pa
9.48 10 ITU
0.7376
1J
-15
femto-
15
Peta-
14.7
psi
t Ib
-18
atto-
18
Exa-
E
1 kW h
3,600,000 J
Time
-21
21
Zetta
zepto-
1d
24
h
Force
-24
yocto-
24
Yotta-
1h
60
min
0.225
Ib
1 min
I yr
IN
60
1x 10
dyne
Fundamental Dimensions and Base SI Units
365
I kip
1,000
Ib
Temperature Change
electric current A ampere
N amount
|mol) mole
Length
J light intensity
Jed) candela
T time
Is]
second
1m
3.28
ft
IK
1.8
1 km
1 in
0.621
mi
1.8
"R
L length
(m] meter
O temperature
[K) kelvin
254
cm
12
Volume
M mass
in
(kgl kilogram
5,280
ft
3.785
L
1 mi
1 pal
1.609
km
4
qt
cm or ce
Common Derived, Named Units in the SI System
Base SI Units
1 yd
3
ft
1,000
SI Unit
Derived From
0.264
gal
Dimensions
Dimension
Mass
0.0353
ML
F-ma
(F) newton IN Force (mass (acceleration
1N - 1
I kg
1 Ib
1 shug
1 ton (metric
1 ton (US
2.205
Ib
Force
A oz
cm or ce
33.8
16
oz
I ml.
32.2
Ib
1 m
1,000
L.
ML?
Energy (E) joule
E-Fd
PI Energy (force) (distance)
1J-1N m -1
2,204.62
Ib
16
d oz
pt
I gt
2,000
Ib
2
pt
ML?
(P) watt (W
1w - 1!-1
Power
Named Units
Power - jenergyi / (time)
farad
1 (A s) / V
1 (V s) / A
pascal
poise
1 Pa
IN/ m
1g/ (cm s)
1 em /s
Pressure (P) pascal (Pal Pressure force) / (area)
P-F/A
1 Pa - 1-1
M
henry
1P
LT2
1H
hertz
I Ha
1 St
stoke
IN m
1 V
V IWIA
V-P/I
Voltage - (power) / (current)
ML?
joule
1J
1Nm
volt
Voltage (V) volt
1V -1"-1
T'I
1 (kg m) / s
1v/A
newton
1N
watt
1 W
1J/s
ohm
10
Thinking Like an Engineer 4e
An Aetive Learning Agpproach
Thinking Like an Engineer 4e
An Aetive Learning Approach
an. P
Cte
Geometric Formulas and Physical Constants Table
Equations Table (in order of appearance in textbook
Geometric Formulas
Distance, Velocity and Acceleration
Newton's Second Law
(8.1 Weight
18.2
Rectangular Parallelepiped
Volume - abe
Surface Area 2 (ab+aeb e)
Rectangle
d- vt
F - m a
w = mg
Areaab
v -at
Perimeter - 2 a+ 2b
Density
8.3 Specific Gravity
[8.3] Specific Weight
[8.3]
SG = Pobject
Pwater
w
m
V
Cirele
Sphere
Y=
Arear
Volume -r
Molecular Weight
8.4 Molarity
Temperature: "F to "C
18.5)
Circumference - 2*r
Surface Area4sr
T[*F] – 32 T["C] – 0
Diameter- 2r
MW =
V
180
100
Triangle
Right Cireular Cone
Temperature: "C to K
[8.5 Temperature: "F to "R
[8.5 Pressure
18.6)
Area-bH
Volume -rH
T (K] = T["C] + 273
T ("R] - T ("F] + 460
F
P =
Torus
Right Circular Cylinder
8.6 ideal Gas Law
18.7)
Pascals Law ydrostatic Presure R6 Pressure: Total
Volume -r H
Volume - 2 R
Phydre PgH
Protal - Pydre + Purface
PV-n RT
Lateral Surface Area -2r H
Energy: Work
[8.8 Energy: Potential
[8.8 Energy: Kinetie, translational 8.8
Physical Constants [Value and Units]
W - F Ax
PE - mg AH
KE = m Av?
3x 10
speed of light in a vacuum
Energy: Thermal
[8.8 Power
8.9 Power
8.9)
speed of sound in air (20 "C)
343.59
E
Q-m Cp AT
P = Pout + Post
Euler number (base of natural logarithm) 2.71828..
e
elementary charge of an electron
1.602 x 10 "C
9.65 x 10
Efficiency
[8.10 Current, elated t charge
[8.11) Ohm's Law of Resistance [8.11]
F Faraday's constant
Pout
Pin
Q-It
V-IR
golden ratio
1.61803..
Joule's First Law of Power [8.11 Capacitance, related to charge 8.11] Energy: Capacitor
[8.11)
acceleration due to gravity
9.8 on Earth; 1.6on Earth's Moon
v2
P-VI-=PR
R
Q-CV
E =; Cv?
N
G gravitational constant
6.67 x 10-
k Boltzmann constant
1.38065 x 10
Inductance
8.11 Energy: Inductor
[8.11] Hooke's Law for Spring
[12.3]
dl
NA Avogadro number
6.022 x 10
V =La
E =LF
2
F-k x
ratio of circle circumference to diamcter
3.14159..
Newton's Law of Viscosity [12.3] Kinematic Viscosity
[12.3
Elastic Materials Youngs Modulan (12
R
ideal gas constant
0.08206 - 8314
PaL
Δν
6 = EE
melK
mal K
Ay
11분-1000분-624는
p density of water](https://content.bartleby.com/qna-images/question/a9b91490-7014-4990-b9a4-62583a5b405c/dfc0b9ef-1680-4a9b-925f-cffee4c3721c/3uqq47v_thumbnail.jpeg)
Transcribed Image Text:Unit Conversion Table
SI Prefixes and Dimensions Table
Angle
1 rad
e rad
SI Prefixes
Example: 1 milligram (mg]- 1 x 10 grams (gd
Power
I hp
57.3
deg
deg
745.7
Example: 1 Megajoule (MJ] - 1x 10 joules (J)
Numbers Greater Than One
180
3.412
BTU / h
Numbers Less Than One
0.00134
hp
cal / min
Prefix
Abbreviation
Prefix
Abbreviation
Area
1 W
Power of 10
Prefix
Power of 10
Prefis
14.34
4,047
m
t Ib /s
-1
deci-
1
deca
-
da
0.7376
1 acre
0.00156
mi
-2
centi-
hecto-
h
1 mi
640
acre
Pressure
3
milli-
3.
kilo-
k
m
1.01325
bar
r
Mega
Energy
1 BTU
33.9
t H0
-6
micro
6.
M
1,055.06
J
1 atm
29.92
in Hg
-9
nano
Giga-
I cal
4.184
J
760
mm Hg
-12
pico-
12
Tera-
т
0.239
cal
101,325
Pa
9.48 10 ITU
0.7376
1J
-15
femto-
15
Peta-
14.7
psi
t Ib
-18
atto-
18
Exa-
E
1 kW h
3,600,000 J
Time
-21
21
Zetta
zepto-
1d
24
h
Force
-24
yocto-
24
Yotta-
1h
60
min
0.225
Ib
1 min
I yr
IN
60
1x 10
dyne
Fundamental Dimensions and Base SI Units
365
I kip
1,000
Ib
Temperature Change
electric current A ampere
N amount
|mol) mole
Length
J light intensity
Jed) candela
T time
Is]
second
1m
3.28
ft
IK
1.8
1 km
1 in
0.621
mi
1.8
"R
L length
(m] meter
O temperature
[K) kelvin
254
cm
12
Volume
M mass
in
(kgl kilogram
5,280
ft
3.785
L
1 mi
1 pal
1.609
km
4
qt
cm or ce
Common Derived, Named Units in the SI System
Base SI Units
1 yd
3
ft
1,000
SI Unit
Derived From
0.264
gal
Dimensions
Dimension
Mass
0.0353
ML
F-ma
(F) newton IN Force (mass (acceleration
1N - 1
I kg
1 Ib
1 shug
1 ton (metric
1 ton (US
2.205
Ib
Force
A oz
cm or ce
33.8
16
oz
I ml.
32.2
Ib
1 m
1,000
L.
ML?
Energy (E) joule
E-Fd
PI Energy (force) (distance)
1J-1N m -1
2,204.62
Ib
16
d oz
pt
I gt
2,000
Ib
2
pt
ML?
(P) watt (W
1w - 1!-1
Power
Named Units
Power - jenergyi / (time)
farad
1 (A s) / V
1 (V s) / A
pascal
poise
1 Pa
IN/ m
1g/ (cm s)
1 em /s
Pressure (P) pascal (Pal Pressure force) / (area)
P-F/A
1 Pa - 1-1
M
henry
1P
LT2
1H
hertz
I Ha
1 St
stoke
IN m
1 V
V IWIA
V-P/I
Voltage - (power) / (current)
ML?
joule
1J
1Nm
volt
Voltage (V) volt
1V -1"-1
T'I
1 (kg m) / s
1v/A
newton
1N
watt
1 W
1J/s
ohm
10
Thinking Like an Engineer 4e
An Aetive Learning Agpproach
Thinking Like an Engineer 4e
An Aetive Learning Approach
an. P
Cte
Geometric Formulas and Physical Constants Table
Equations Table (in order of appearance in textbook
Geometric Formulas
Distance, Velocity and Acceleration
Newton's Second Law
(8.1 Weight
18.2
Rectangular Parallelepiped
Volume - abe
Surface Area 2 (ab+aeb e)
Rectangle
d- vt
F - m a
w = mg
Areaab
v -at
Perimeter - 2 a+ 2b
Density
8.3 Specific Gravity
[8.3] Specific Weight
[8.3]
SG = Pobject
Pwater
w
m
V
Cirele
Sphere
Y=
Arear
Volume -r
Molecular Weight
8.4 Molarity
Temperature: "F to "C
18.5)
Circumference - 2*r
Surface Area4sr
T[*F] – 32 T["C] – 0
Diameter- 2r
MW =
V
180
100
Triangle
Right Cireular Cone
Temperature: "C to K
[8.5 Temperature: "F to "R
[8.5 Pressure
18.6)
Area-bH
Volume -rH
T (K] = T["C] + 273
T ("R] - T ("F] + 460
F
P =
Torus
Right Circular Cylinder
8.6 ideal Gas Law
18.7)
Pascals Law ydrostatic Presure R6 Pressure: Total
Volume -r H
Volume - 2 R
Phydre PgH
Protal - Pydre + Purface
PV-n RT
Lateral Surface Area -2r H
Energy: Work
[8.8 Energy: Potential
[8.8 Energy: Kinetie, translational 8.8
Physical Constants [Value and Units]
W - F Ax
PE - mg AH
KE = m Av?
3x 10
speed of light in a vacuum
Energy: Thermal
[8.8 Power
8.9 Power
8.9)
speed of sound in air (20 "C)
343.59
E
Q-m Cp AT
P = Pout + Post
Euler number (base of natural logarithm) 2.71828..
e
elementary charge of an electron
1.602 x 10 "C
9.65 x 10
Efficiency
[8.10 Current, elated t charge
[8.11) Ohm's Law of Resistance [8.11]
F Faraday's constant
Pout
Pin
Q-It
V-IR
golden ratio
1.61803..
Joule's First Law of Power [8.11 Capacitance, related to charge 8.11] Energy: Capacitor
[8.11)
acceleration due to gravity
9.8 on Earth; 1.6on Earth's Moon
v2
P-VI-=PR
R
Q-CV
E =; Cv?
N
G gravitational constant
6.67 x 10-
k Boltzmann constant
1.38065 x 10
Inductance
8.11 Energy: Inductor
[8.11] Hooke's Law for Spring
[12.3]
dl
NA Avogadro number
6.022 x 10
V =La
E =LF
2
F-k x
ratio of circle circumference to diamcter
3.14159..
Newton's Law of Viscosity [12.3] Kinematic Viscosity
[12.3
Elastic Materials Youngs Modulan (12
R
ideal gas constant
0.08206 - 8314
PaL
Δν
6 = EE
melK
mal K
Ay
11분-1000분-624는
p density of water
![113 BoINE; Hnal answer In Canvas, upload your work to GradeScope]
A small heater Is used to keep critical components from getting too cold In space.
During operation, the device will produce 77,500 calorles (cal of thermal energy over a time-span of 2 hours (h).
Additionally, the device will use 8600 calories (cal] for operation that Is not turned Into thermal energy during the same 2
hour (h] time-span. This energy is not used to create the desired temperature change; It is "lost" during the operation of the
heater.
What is the total power required to operate the heater, in units of watts W?
How efficient is the device? Express your answer as a percentage.](https://content.bartleby.com/qna-images/question/a9b91490-7014-4990-b9a4-62583a5b405c/dfc0b9ef-1680-4a9b-925f-cffee4c3721c/dox9znj_thumbnail.jpeg)
Transcribed Image Text:113 BoINE; Hnal answer In Canvas, upload your work to GradeScope]
A small heater Is used to keep critical components from getting too cold In space.
During operation, the device will produce 77,500 calorles (cal of thermal energy over a time-span of 2 hours (h).
Additionally, the device will use 8600 calories (cal] for operation that Is not turned Into thermal energy during the same 2
hour (h] time-span. This energy is not used to create the desired temperature change; It is "lost" during the operation of the
heater.
What is the total power required to operate the heater, in units of watts W?
How efficient is the device? Express your answer as a percentage.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I am attaching both questions for 4 and 5 with the question in the image. thank you. NOTE : So the last person answered this question WITHOUT refencing the answer for whether question 4 or 5 answeres were given, so i am asking for question 5(or the answer for the question that was NOT solved because it was not referenced.) These were the following answers given to me from the last person on bartleby who answered my question without referencing whether it was the answer for question 4 or 5. 1 pass 2 fail 3 fail 4 passarrow_forwardAn infinitely large sheet is subjected to a gross stress of 350 MPa. There is a central crack 5/π cm long and the material has a yield strength of 500 MPa. a. Calculate the stress-intensity factor at the tip of the crack. b. Calculate the plastic-zone size at the crack tip. c. Comment upon the validity of this plastic-zone correction factor for the above case.arrow_forwardDo and Answer the ff.arrow_forward
- show all steps in detail, units and formulas please.arrow_forwardQ4arrow_forwardhand written plz Answer the following questions using the information provided in this unit. Know and Understand 1. True or False? The primary purpose of section views is to help feature exterior detail without using hidden lines. For the next three terms, match the three types of lines to the three descriptions. Answers are used only once. 2. Cutting-plane line 3. Section line 4. Short break line A. Not exclusive to section views, but needed for broken- out sections. B. Drawn thick in a view adjacent to the section view. C. Drawn thin, and usually continuous, but sometimes dashed. 5. Of the following, which is not a type of section view featured in this unit? A. Full B. Half C. Quarter D. Offset 6. True or False? The preferred dividing line between the two halves of a half-section view is the visible line. 7. An object with a number of odd features, such as spokes or holes, often has a(n) section so the odd features can be rotated around the axis into a vertical cutting plane,…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY