College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A small ball is attached to the lower end of a 0.800-mm-long string, and the other end of the string is tied to a horizontal rod. The string makes a constant angle of 37.4 ∘∘ with the vertical as the ball moves at a constant speed in a horizontal circle.
1.
If it takes the ball 1.60 ss to complete one revolution, what is the magnitude of the radial acceleration of the ball?
Express your answer with the appropriate units.
2.
Expert Solution
arrow_forward
Step 1
Given value----
- A small ball is attached to the lower end of a 0.800-m long string.
- The string makes a constant angle of 37.4 ∘.
- ball 1.60 ss to complete one revolution .
We have to find---
- what is the magnitude of the radial acceleration of the ball?
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 13. A skier/snowboarder starts at rest at the top of a snowy (friction-free) hill with height h₁. After the bottom of this hill there is a small "jump" hill. The top of the jump has height h, and a curvature of radius R. What is the minimum height of the starting hill, himin, so that the skier/snowboarder jumps or "catches air" at the top of hill 2? Solve for himin in terms of h₂, R, and g. Hint: if the skier/snowboarder jumps, he/she/they loose contact with the snowy ground. h₁ to jump!arrow_forwardDifferent situation now. You re out in space, on a rotating wheel-shaped space station of radius 743 m. You feel planted firmly on the floor , due to artificial gravity. The gravity you experience is Earth-normal, that is, g = 9.81 m/s^2. How fast is the space station rotating in order to produce this much artificial gravity? Express your answer in revolutions per minute (rpm). 0.115 rpm 85.4 rpm 0.549 rpm 1.097 rpmarrow_forwardYou are on a boat in the middle of the Pacific Ocean at the equator traveling in a hydrofoil going at a constant speed of 300 ?/?. The water is perfectly still. What is your acceleration: a) If you're heading due North? b) If you're heading due East? c) If you're heading straight up (something probably went wrong at this point). Assume the following: The earth has a radius of 6371 km. The earth makes one full revolution every 24 hours. The gravitational constant at sea level is 9.81 m/s2. East and North are relative to the Earth's axial north, not magnetic north.arrow_forward
- Thanks!!arrow_forwardHow would I begin to solve this problem? In Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for a rocket's position measured from the center of the Earth is given by y(t) = (RE3/2 + 3*(g/2)1/2 REt)2/3 where RE is the radius of the Earth (6.38 ✕ 106 m) and g is the constant acceleration of an object in free fall near the Earth's surface (9.81 m/s2). (a) Derive expressions for vy(t) and ay(t). (Use the following as necessary: g, RE, and t. Do not substitute numerical values; use variables only.)arrow_forwardAirplane makes a gradual 90 degrees turn while flying at a constant speed of 200 m/s. The process takes 20.0 seconds to complete. 1. for this turn, the magnitude of the radial acceleration of the plane is?arrow_forward
- 10. You're out in space, on a rotating wheel-shaped space station of radius 551 m. You feel planted firmly on the floor , due to artificial gravity. The gravity you experience is Earth-normal, that is, g = 9.81 m/s^2. How fast is the space station rotating in order to produce this much artificial gravity? Express your answer in revolutions per minute (rpm). 1.019 rpm 1.274 rpm 0.133 rpm 73.5 rpmarrow_forwardA small object of mass 0.500 kg is attached by a 0 0.650 m-long cord to a pin set into the surface of a frictionless tabletop. The object moves in a circle on the horizontal surface with a speed of 6.91 m/s.1. What is the magnitude of the radial acceleration of the object?2. What is the tension of the cord?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON