Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
A slender rod of mass m0=10.5kg and length l=840 mm is welded at its midpoint A to the rim of the solid circular disk of mass m=20 kg and radius r=295 mm. The center of the disk, which rolls without slipping, has a velocity v=1.5 m/s at the instant when A is at the top of the disk with the rod parallel to the ground. For this instant determine the angular momentum of the combined body about O. The angular momentum is positive if counterclockwise, negative if clockwise.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- The uniform thin pin-connected bars AB, BC, and CD have masses mÃß = 2.3 kg, mBC = 3.2 kg, and mCD= 5.0 kg, respectively. Letting R = 0.75 m, L = 1.2 m, and H= 1.55 m and knowing that bar AB rotates at a constant angular velocity WAB= 4 rad/s, compute the angular momentum of bar AB about A, of bar BC about A, and bar CD about D at the instant shown. R L B WAB + | Do H The angular momentum of bar AB about A is ( The angular momentum of bar BC about A is ( The angular momentum of bar CD about Dis ( kg.m²/s) k. kg-m²/s) k. kg-m²/s) k.arrow_forwardHi, how do you solve this question?arrow_forwardThe slotted circular disk whose mass is 4.9 kg has a radius of gyration about O of 230 mm. The disk carries the four steel balls, each of mass 0.17 kg and located as shown, and rotates freely about a vertical axis through O with an angular speed of 164 rev/min. Each of the small balls is held in place by a latching device not shown. If the balls are released while the disk is rotating and come to rest relative to the disk at the outer ends of the slots, compute the new angular speed N of the disk. Also find the magnitude |AE| of the energy loss due to the impact of the balls with the ends of the slots. Neglect the diameter of the balls and discuss this approximation. 164 rev/min 145 mm 305 mmarrow_forward
- P.3) Determine the angular momentum Hp for the three masses A, B, and C (ma = mB = mc 0.2 kg) when all three masses are clustered at the origin O of the Cartesian coordinate axes. The point P is located at 0.1 m away from the origin in k direction. The velocities of the masses are; VA = 0.05 i m/s, vB = 0.05 į m/s, and vc = 0.05 k m/s. CB Parrow_forwardPravinbhaiarrow_forwardPart A The 21-kg roll of paper has a radius of gyration kA = 90 mm about an axis passing through point A. It is pin supported at both ends by two brackets AB. The roll rests against a wall for which the coefficient of kinetic friction is u = 0.2. Neglect the mass of paper that is removed. (Figure 1) Determine the magnitude of the constant vertical force F that must be applied to the roll to pull off 1 m of paper in t = 3 s starting from rest. Express your answer to three significant figures and include the appropriate units. TH HẢ ? F = Value Units Submit Request Answer Provide Feedback Figure < 1 of 1 300 mm 125 mmarrow_forward
- A cable is wrapped around the spool’s center hub. The mass of the spool is m= 100 kg, the radius r1 = 0.4 m, r2 =0.6 m, and the radius of gyration is kG = 0.3 m. A horizontal force P = 10 N is applied to the cord. The spool is initially at rest and rolls without slipping. (3) The angular velocity of the spool after 2 seconds is __________rad/s (two decimal places)arrow_forwardA drum can rotate about a fixed-point O. The A block is attached to a cord wrapping around the drum. The mass of the drum is md = 100kg and the radius is r = 0.5 m. The radius of gyration of the drum about point O is ko=0.3 m. The mass of the block is mb= 20kg. The block is released from rest. The acceleration due to gravity is g=9.81 m/s2. (1) Calculate the mass moment of inertia of the drum about the point O, IO_______(kgm2) (two decimal places)arrow_forwardConsider a toy vehicle with a body of mass M = 2Kg on two wheels, each of mass m = 1Kg and radius r = 0.1 m as shown in the figure. It starts from rest on top of a small hill of height H = 10 m and rolls without slipping. What is the linear velocity of the center of mass at the bottom of the hill? HINT: There is rotational and translational kinetic energy in this problem. Vo = 0 M- Vf M-2K m=lKg molkyarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY