A shopper in a supermarket pushes a cart with a force of 33.0 N directed at an angle of 25.0° below the horizontal. The force is just sufficient to balance various friction forces, so the cart moves at constant speed. Find the work done by the shopper on the cart as she moves down a 54.2-m-long aisle. The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the work done by frictional forces doesn't change, would the shopper's applied force be larger, smaller, or the same? What about the work done on the cart by the shopper? Is the work larger in part a, or is the work larger in part b; or is the work the same in both parts?
A shopper in a supermarket pushes a cart with a force of 33.0 N directed at an angle of 25.0° below the horizontal. The force is just sufficient to balance various friction forces, so the cart moves at constant speed. Find the work done by the shopper on the cart as she moves down a 54.2-m-long aisle. The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the work done by frictional forces doesn't change, would the shopper's applied force be larger, smaller, or the same? What about the work done on the cart by the shopper? Is the work larger in part a, or is the work larger in part b; or is the work the same in both parts?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Topic Video
Question
A shopper in a supermarket pushes a cart with a force of 33.0 N directed at an angle of 25.0° below the horizontal. The force is just sufficient to balance various friction forces, so the cart moves at constant speed.
- Find the work done by the shopper on the cart as she moves down a 54.2-m-long aisle.
- The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the work done by frictional forces doesn't change, would the shopper's applied force be larger, smaller, or the same?
- What about the work done on the cart by the shopper? Is the work larger in part a, or is the work larger in part b; or is the work the same in both parts?
Expert Solution
Step 1: Writing the given data
The applied force on the cart,
The direction of the angle of the force with the horizontal,
The horizontal displacement of the cart,
Trending now
This is a popular solution!
Step by step
Solved in 5 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON