Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question
100%
**Question:**

A sensor needs a bias voltage of +3.000 volts. The DAC producing the voltage is 12 bits with a 3.3 volt reference. What is the DAC input code?

- ○ 1241
- ○ 3724
- ○ 3103
- ○ 3541

**Explanation:**

To find the correct DAC input code, use the formula for a Digital-to-Analog Converter (DAC):

\[ \text{Output Voltage} = \left(\frac{\text{Digital Code}}{2^n - 1}\right) \times \text{Reference Voltage} \]

Where:
- \( n \) is the number of bits (12 bits in this case).
- Digital Code is what we are trying to find.
- Reference Voltage is 3.3 volts.

Rearranging for the Digital Code gives:

\[ \text{Digital Code} = \left(\frac{\text{Output Voltage} \times (2^n - 1)}{\text{Reference Voltage}}\right) \]

Plug in the values:

\[ \text{Digital Code} = \left(\frac{3.000 \times (2^{12} - 1)}{3.3}\right) \]

Calculate:

\[ 2^{12} - 1 = 4095 \]

\[ \text{Digital Code} = \left(\frac{3.000 \times 4095}{3.3}\right) \]

\[ \text{Digital Code} \approx 3724 \]

Therefore, the correct answer is:

- ○ 3724
expand button
Transcribed Image Text:**Question:** A sensor needs a bias voltage of +3.000 volts. The DAC producing the voltage is 12 bits with a 3.3 volt reference. What is the DAC input code? - ○ 1241 - ○ 3724 - ○ 3103 - ○ 3541 **Explanation:** To find the correct DAC input code, use the formula for a Digital-to-Analog Converter (DAC): \[ \text{Output Voltage} = \left(\frac{\text{Digital Code}}{2^n - 1}\right) \times \text{Reference Voltage} \] Where: - \( n \) is the number of bits (12 bits in this case). - Digital Code is what we are trying to find. - Reference Voltage is 3.3 volts. Rearranging for the Digital Code gives: \[ \text{Digital Code} = \left(\frac{\text{Output Voltage} \times (2^n - 1)}{\text{Reference Voltage}}\right) \] Plug in the values: \[ \text{Digital Code} = \left(\frac{3.000 \times (2^{12} - 1)}{3.3}\right) \] Calculate: \[ 2^{12} - 1 = 4095 \] \[ \text{Digital Code} = \left(\frac{3.000 \times 4095}{3.3}\right) \] \[ \text{Digital Code} \approx 3724 \] Therefore, the correct answer is: - ○ 3724
Expert Solution
Check Mark
Step 1

Electrical Engineering homework question answer, step 1, image 1

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,