Question
A satellite is in a circular orbit around the Earth at an altitude of 2.80 x 10^6 m. Find a) the period of the orbit, b) the speed of the satellite, and c) the acceleration of the satellite. (Please explain how you reach your answer)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images
Knowledge Booster
Similar questions
- Astronomers discover an exoplanet, a planet orbiting a star other than the Sun, that has an orbital period of 1.50 Earth years in a circular orbit around its star, which has a measured mass of 3.80×10^30 kg.Determine the radius ? of the exoplanet's orbit.arrow_forwardA satellite is in a circular orbit about the earth (ME = 5.98 x 1024 kg). The period of the satellite is 1.03 x 104 s. What is the speed at which the satellite travels?arrow_forwardA planet requires 340 (Earth) days to complete its circular orbit around its sun, which has a mass of 7.5 x 1030 kg. What are the planet's (a) orbital radius and (b) orbital speed?arrow_forward
- A satellite is in a circular orbit around the Earth at an altitude of 3.82 x 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 x 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the center of the eartharrow_forwardA satellite is in a circular orbit around the Earth at an altitude of 2.62 × 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 x 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forwardAstronomers discover an exoplanet, a planet orbiting a star other than the Sun, that has an orbital period of 3.87 Earth years in a circular orbit around its star, which has a measured mass of 3.77×10^30 kg. Find the radius r of the exoplanet's orbit.arrow_forward
- A satellite is in a circular orbit around the Earth at an altitude of 3.94 x 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 x 106 m, and the mass of the Earth is 5.98 x 1024 kg.) (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forwardA satellite is launched to orbit the Earth at an altitude of 1.80 x 107 m for use in the Global Positioning System (GPS). Take the mass of the Earth to be 5.97 x 1024 kg and its radius 6.38 x 106 m. (a) What is the orbital period of this GPS satellite? h (b) With what speed does it orbit the Earth? m/sarrow_forwardThe orbit of the moon around the earth is approximately circular, with a mean radius of 3.85 x 108 m. It takes 27.3 days for the moon to complete one revolution around the earth. Find the average orbital speed of the moon.arrow_forward
- A satellite is in a circular orbit around the Earth at an altitude of 2.63 x 10° m. (a) Find the period of the orbit. (b) Find the speed of the satellite. (c) Find the acceleration of the satellite. Step 1 (a) satelli has an Ititu of h = 2.63 x 10° m face of Earth, the adius orbit r, where R- is the Earth's radius, is given by x 106 m) = x 106 m. RE + h = 6.38 x 106 r = +arrow_forwardThe International Space Station has a mass of 4.19 ✕ 105 kg and orbits at a radius of 6.79 ✕ 106 m from the center of Earth. Find the gravitational force exerted by Earth on the space station, the space station's gravitational potential energy, and the weight of an 88.3 kg astronaut living inside the station. Just need the answer to option B (a) the gravitational force (in N) exerted by Earth on the space station (Enter the magnitude.) 3622431.86 N (b) the space station's gravitational potential energy (in J) _____________J (c) the weight (in N) of an 88.3 kg astronaut living inside the station 763.39 Narrow_forwardA satellite is in a circular orbit around the Earth at an altitude of 3.80 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.) ?h(b) Find the speed of the satellite.? km/s(c) Find the acceleration of the satellite.? m/s2 toward the center of the eartharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios