
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
A rope is used to pull a 3.57 kg block at constant speed 4.06 m along a horizontal floor. The force on the block from
the rope is 7.68 N and directed θ = 15.0
◦ above the horizontal. What are (a) the work done by the rope’s force, (b)
the increase in thermal energy of the block-floor system, and (c) the coefficient of kinetic friction between the block
and floor
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rope is used to pull a 5.92 kg block at constant speed 5.92 m along a horizontal floor. The force on the block from the rope is 7.05 N and directed 34.8° above the horizontal. What are (a) the work done by the rope's force, (b) the increase in thermal energy of the block-floor system, and (c) the coefficient of kinetic friction between the block and floor? (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardA horizontal force of magnitude 47.6 N pushes a block of mass 3.58 kg across a floor where the coefficient of kinetic friction is 0.596. (a) How much work is done by that applied force on the block-floor system when the block slides through a displacement of 4.51 m across the floor? (b) During that displacement, the thermal energy of the block increases by 37.4 J. What is the increase in thermal energy of the floor? (c) What is the increase in the kinetic energy of the block? (a) Number Units (b) Number i Units (c) Number Units > >arrow_forwardA 35.5 kg box initially at rest is pushed 5.75 m along a rough, horizontal floor with a constant applied horizontal force of 130 N. If the coefficient of friction between box and floor is 0.300, find the following. (a) the work done by the applied force (b) the increase in internal energy in the box-floor system due to friction (c) the work done by the normal force (d) the work done by the gravitational force (e) the change in kinetic energy of the box (f) the final speed of the box m/sarrow_forward
- A rope is used to pull a 4.90 kg block at constant speed 6.80 m along a horizontal floor. The force on the block from the rope is 5.95 N and directed 17.5° above the horizontal. What are (a) the work done by the rope's force, (b) the increase in thermal energy of the block-floor system, and (c) the coefficient of kinetic friction between the block and floor?arrow_forwardA 0.200-kg particle has a speed of 1.50 m/s at point and kinetic energy of 7.10 J at point B. (a) What is its kinetic energy at ? J (b) What is its speed at B? m/s (c) What is the net work done on the particle by external forces as it moves from J to Ⓡ?arrow_forwardthe answers are incorrectarrow_forward
- A 36.0 kg box initially at rest is pushed 5.45 m along a rough, horizontal floor with a constant applied horizontal force of 150 N. If the coefficient of friction between box and floor is 0.300, find the following. (a) the work done by the applied force (b) the increase in internal energy in the box-floor system due to friction (c) the work done by the normal force (d) the work done by the gravitational force (e) the change in kinetic energy of the box (f) the final speed of the box m/sarrow_forwardA 7.80-g bullet moving at 530 m/s penetrates a tree trunk to a depth of 4.50 cm. (a) Use work and energy considerations to find the average frictional force that stops the bullet. (b) Assuming the frictional force is constant, determine how much time elapses between the moment the bullet enters the tree and the moment it stops moving.arrow_forwardStarting from rest, a 4.70-kg block slides 3.40 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is = 0.436. (a) Determine the work done by the force of gravity. (b) Determine the work done by the friction force between block and incline. (c) Determine the work done by the normal force. (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were used to span the same vertical height?arrow_forward
- F A 2.3 kg block is moved at constant speed over a surface for which the coefficient of kinetic friction is 0.26. The displacement is 6 m. It is pushed by a force directed at 34 degrees below the horizontal as shown in the figure above. Find the work done on the block by: a) the force; a) friction; a) gravity.arrow_forwardA 2.28 kg block is pushed 1.69 m up a ver- tical wall with constant speed by a constant force of magnitude F applied at an angle of 60.8° with the horizontal. The acceleration of gravity is 9.8 m/s². 60.8° F 2.28 kg If the coefficient of kinetic friction between the block and wall is 0.631, find the work done by F. Answer in units of J. Answer in units of J. Your response... i Previous Responses X #1.37.76 PALETTEarrow_forwardThe work W done by a constant force F S on an object that undergoes displacement sS from point 1 to point 2 is W = F vec . svec . For F in newtons (N) and s in meters (m), W is in joules (J). If, during a displacement of the object, F vec has constant direction 60.0o above the -x-axis and constant magnitude 5.00 N and if the displacement is 0.800 m in the +x-direction, what is the work done by the force F vec ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON