College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A roller-coaster car has a potential energy of 750 kJ and a kinetic energy of 150 kJ at point A in his travel. At the low point on the ride, the potential energy is zero, and 100 kJ of work has been done against friction since it left point A. What is the kinetic energy of the car at this low point?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the figure, a frictionless roller coaster car of mass m = 992 kg tops the first hill with speed v0 = 16.7 m/s at height h = 40.7 m. How much work does the gravitational force do on the car from that point to (a) point A, (b) point B, and (c) point C? If the gravitational potential energy of the car-Earth system is taken to be zero at C, what is its value when the car is at (d) B and (e) A? I know the first one is 0 J.arrow_forwardA block of mass ?=0.350kg is released from rest, from a curved ramp of height h= 42.0 cm (point A in the figure). The block slides down frictionless to the bottom of the ramp to point B. a) What is work done by gravity when the block moves from A to B? b) What is the speed of the block at the bottom of the ramps (point B in the figure)? c) The box continuesto slide frictionless and compress a spring a distance Δ?=8.20cm until it stops at point C. What is the spring constant k of the spring? d)What is the elastic potential energy stored in the spring when the block is at point C?arrow_forwardA 0.32-kg particle has a speed of 5.0 m/s at point A and kinetic energy of 8.1 J at point B. (a) What is its kinetic energy at A? (b) What is its speed at point B? m/s (c) What is the total work done on the particle as it moves from A to B?arrow_forward
- On a horizontal surface, an object slides from point P to point Q along a straight line, then slides back from Q to P along a semicircle. If P and Q are a distance L apart, how much work did the force of kinetic friction do during the entire process? The magnitude of fk is fk.arrow_forwardA 0.59-kg particle has a speed of 5.0 m/s at point A and kinetic energy of 8.5 J at point B. (a) What is its kinetic energy at A? J(b) What is its speed at point B? m/s(c) What is the total work done on the particle as it moves from A to B? Jarrow_forwardA car with a mass of 2000 kg starts at rest from a point 30 m above the ground. At point B, it is 15 m above the ground. If the initial kinetic energy was zero and the work done against friction between the starting point and point B is 20 000 J, what is the kinetic energy of the car at point B? (g= 10 m/s2).arrow_forward
- Two 37.0-lbm twins are playing in their backyard. One toddler is running full speed at 5.5 mph and his path will take him directly into a brick wall. His sister has climbed a 3.5-ft ladder and is perched precariously atop it. Calculate the kinetic and potential energies of the two twins with respect to their stationary destinations (the wall and the ground). Boy Girl i KE (lbf.ft) PE (lbf.ft) If potential energy is completely converted to kinetic energy during the girl's fall, how fast will she be travelling upon impact? mpharrow_forwardHow much work is done on the book by friction during a displacement of 3.6 m to the left? The book now slides 3.6 m to the right, returning to its starting point. During this second 3.6 m displacement, how much work is done on the book by friction? What is the total work done on the book by friction during the complete round trip? On the basis of your answer to the previous question, would you say that the friction force is conservative or nonconservative?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON