College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A rocket takes off from Earth's surface, accelerating straight up at 45.2m/s2. Calculate the normal force (in N) acting on an astronaut of mass 85.9kg, including his space suit. (Assume the rocket's initial motion parallel to the +y-direction. Indicate the direction with the sign of your answer.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A ball with a mass of 1.50 kg rolls down a hemisphere from A to B. Se figure. At A, it has a centripetal acceleration with a magnitude of 1.80 m/s² and a speed of 1.20 m/s. At B, it has a centripetal acceleration with a magnitude of 5.50 m/s? and a normal force with a magnitude of 4.30 N. Find the magnitude of the normal force on the ball at A, and the angle 0. Ignore friction everywhere. VA = 1.20 m/s В VB = ? 0= ? R = ?arrow_forwardA rope is attached to Box A, and it is pulled on a rough surface due east with friction. The mass of Box A is 50 kg, and the tension force applied to the box is 100 N due east. If Box A is pulled by the tension force for 4.0 s, and the velocity changes from 0.1 m/s due east to 0.65 m/s due east during the time Box A is pulled, answer the following questions. (a) What is the acceleration of Box A during the time it is pulled? (b) What is the change in kinetic energy of Box A during the time it is pulled? (c) What is the net work done on Box A by the tension force and the frictional force together? (d) What is the work done on Box A by the tension force alone? (e) What is the work done on Box A by the frictional force alone?arrow_forwardPlease show complete solution for letters d, e, f, g and harrow_forward
- A robot with fancy wheels is trained to move in two directions simultaneously. The force in the forward direction is 10 N and the force in the horizontal direction is 8 N. If the robot starts from rest, has a mass of 75 kg and travels for 100 seconds, what is the magnitude of the robot's final displacement?arrow_forwardA ball with mass 0.85 kg is thrown upward with initial velocity 30 m/s from the roof of a building 40 m high. Assume there is a force due to v² directed opposite to the velocity, air resistance of magnitude 1325 where the velocity v is measured in m/s. NOTE: Use g=9.8 m/s² as the acceleration due to gravity. Round your answers to 2 decimal places. a) Find the maximum height above the ground that the ball reaches. Height: m b) Find the time that the ball hits the ground. Time: seconds c) Use a graphing utility to plot the graphs of velocity and position versus time.arrow_forwardDavid throws a 50 kg cart down a ramp with an initial speed of vi = 6 m/s. The ramp is at an angle of 20◦, and the coefficient of kinetic friction between the cart and the ramp is µk = 0.25. Additionally, the coefficient of static friction is µs = 0.55. How much time does it take to reach Ryan who is 10 m away? Assume that the cart slides and doesn’t roll.arrow_forward
- A ball with mass 0.75 kg is thrown upward with initial velocity 30 m/s from the roof of a building 10 m high. Assume there is a force due to |v| air resistance of magnitude directed opposite to the velocity, where 30 the velocity v is measured in m/s. NOTE: Use g=9.8 m/s² as the acceleration due to gravity. Round your answers to 2 decimal places. a) Find the maximum height above the ground that the ball reaches. Height: m b) Find the time that the ball hits the ground. Time: secondsarrow_forwardA certain aircraft has a mass of 300,000 kg. At a certain instant during its landing, its speed is 27.0 m/s. If the braking force is a constant 445,000 N, what is the speed of the airplane 10.0 s later?arrow_forwardA 20-kg particle moves with this trajectory: r ( t ) = − 40 t ȷ ^ + 25 t ı ^ + ( 5 ı ^ − 8 ȷ ^ ) e − 5 t Calculate the force on the particle. (Units are meters, seconds, and Newtons.)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON