College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
A rocket powered car is set inside a circular track and ignited. Pressure sensors on the wall of the track measure the centripetal acceleration of the car as a function of time to be
?c(?)=(4 m/s6)?4+(28 m/s4)?2+(49 m/s2)
If the radius of the track is 3.28 m, what is the tangential acceleration of the rocket car at ?=5.51 s?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- There is a clever kitchen gadget for drying lettuce leaves after you wash them. It consists of a cylindrical container mounted so that it can be rotated about its axis by turning a hand crank. The outer wall of the cylinder is perforated with small holes. You put the wet leaves in the container and turn the crank to spin off the water. The radius of the container is 12.2 cm. When the cylinder is rotating at 2.45 revolutions per second, what is the magnitude of the centripetal acceleration at the outer wall? Number Units #arrow_forwardA child is holding a string with a ball tied at the end. The child spins around in a circle causing the ball to travel in uniform circular motion. While doing this, the 1.3 m long string makes a 48.8◦ angle below horizontal. What is the tangential speed of the ball?arrow_forwardGeorge swings a ball around him, in uniform circular motion. The circle's radius is r. George inadvertently releases the string, and the ball goes outward. He catches the string again, and now the ball goes around him at a new rotation rate, with a new radius r + Δr. Calculate the new rotation rate (in rev/s). r = 2.6 m Δr = 0.5 m Original rotation rate = ωi = 1.6 rev/s The ball's mass is m = 83 gramsarrow_forward
- I Review i Two satellites are in circular orbits around a planet that has radius 9.00 × 10° m. One satellite has mass 68.0 kg, orbital radius 6.00x107 m, and orbital speed 4800 m/s. The second satellite has mass 84.0 kg and orbital radius 5.00x107 m. Part A What is the orbital speed of this second satellite? Express your answer to three significant figures and include the appropriate units. HẢ ? V = Value Units Submit Request Answerarrow_forwardYou re out in space, on a rotating wheel-shaped space station of radius 679 m. You feel planted firmly on the floor , due to artificial gravity. The gravity you experience is Earth-normal, that is, g = 9.81 m/s^2. How fast is the space station rotating in order to produce this much artificial gravity? Express your answer in revolutions per minute (rpm). 0.120 rpm 81.6 rpm 0.459 rpm 1.148 rpmarrow_forwardWhat is the radial acceleration of the blade tip expressed as a multiple of the acceleration due to gravity, g? Express your answer as a multiple of g.arrow_forward
- A sprinter participating in the 200 m dash has to run around a track that has a circular arc with a radius of curvature of 26 m. She completes the 200 m dash in 22.8 seconds at constant speed throughout the race. a) What is the magnitude of her centripetal acceleration in m/s2 as she runs the curved portion of the track? b) What is the magnitude of her tangential acceleration in m/s2 as she runs the curved portion of the track? c) What is the magnitude of her angular acceleration in rad/s2 as she runs the curved portion of the track? d) What is the magnitude of her resultant linear acceleration in m/s2 as she runs the curved portion of the track?arrow_forwardA “blink of an eye” is a time interval of about 150 ms for an average adult. The “closure” portion of the blink takes only about 55 ms. Let us model the closure of the upper eyelid as uniform angular acceleration through an angular displacement of 15.4°. a. What is the value of the angular acceleration the eyelid undergoes while closing? answer in rad/s^2 b. What is the tangential acceleration of the edge of the eyelid while closing if the radius of the eyeball is 1.25 cm? answerin m/s^2arrow_forwardA ball travels in uniform circular motion with a Period of 2 seconds. What is the tangential velocity of the object if it is moving in a circle of radius 2 m? 2π m/s m/s 4π m/s 2 m/s 4 m/sarrow_forward
- George swings a ball around him, in uniform circular motion. The circle's radius is r. George inadvertently releases the string, and the ball goes outward. He catches the string again, and now the ball goes around him at a new rotation rate, with a new radius r + Δr. Calculate the new rotation rate (in rev/s). r = 3.0 m Δr = 1.0 m Original rotation rate = ωi = 1.1 rev/s The ball's mass is m = 160 gramsarrow_forwardA car sits at rest at the starting line of a circular racetrack. It begins to accelerate at a constant rate (that 15, a constant angular acceleration) as it makes Its way halfway around the track. It then decelerates at the same constant rate during the second halt of the lap. It completes the entire lap in a time of 28.5 seconds. Also, the radius of the racetrack is 42.0 m. What is the car's top speed?A) 25.6 m/SB) 44.1 m/SC) 18.5 m/sD) 35.1 m/sarrow_forwardPls help ASAParrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON