Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A pump with a volumetric displacement of 4 in^3/rev runs at 3600 rpm and produces 1500 psi. The actual flow rate is 59 gpm. What is the volumetric efficiency of this pump? Enter a whole number percentage.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 6 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Show in Figure 1 is the water flow system. The velocity head difference is . Volume flow rate is . The heights are and , respectively. The power output from the motor is , . The energy added by the pump is . The energy loss between point 1 and 2 is . Calculate 4) the pressure head difference in meter_________ marrow_forwardi need ans very very fast in 20 min and thank you | ᴅʏʙᴀʟᴀ ?✨؛arrow_forwardDisplacement (c): 0.2 in3/revShank diameter (d) = 0.625 in.Piston diameter (D) = 1.5 in.Rotation speed (n): 1725 RPMPressure (P): 600 PSIStroke (L) = 18in. a) Calculate the theoretical flow rate of the pump in in3/min and US GPM.Theoretical flow (Q) = Theoretical displacement (C) x Speed of revolution (n)Theoretical flow (Q) = 0.2 in3/rev x 1725 rpmTheoretical flow (Q) = 345 in3/min = 1.49 US GPM b) Calculate the cylinder output speed in in/s.Cylinder output speed (VS) = Piston side flow (Q) / Piston area (Ap)Cylinder output speed (VS) = (Displacement x Speed of revolution) / Piston area (Ap)Cylinder output speed (VS) = (0.2 in3/rev x 1725 RPM) / 1.77 in2Cylinder output speed (VS) = (0.2 in3/rev x 1725 RPM) / 1.77 in2Cylinder output speed (VS) = 196.02in/s = 196.02 / 60s = 3.20 in/s Questions: c) Knowing the output velocity (ram speed), calculate the rod side flow in GPM when the ram is extending. d) Calculate the piston exit time in seconds. e) Calculate the piston entry time in…arrow_forward
- can you please find solution for this questionarrow_forwardTopics: Fundamental of fluid flow Oil (SG=0.82) entering a pump through an 8-inch diameter pipe at 4 psi has a flow rate of 3.5 cfs. It leaves the pump through a 4-inch diameter pipe at 15 psi. Assuming that the suction and discharge sides of the pump are at the same elevation, find the horsepower delivered to the water by the pump (550 lb.ft/s = 1 HP). Illustrate the problem and show your complete solution.arrow_forwardThe answer is one of the options below please solve carefully and circle the correct option Please write clear .arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY