
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:A proton (m = 1.67 x 10-27 kg) travels a distance of 3.2 cm
parallel to a uniform electric field 3.4 x105 V/m between
the plates shown in the figure. If the initial velocity is 1.5 x
105 m/s, find the magnitude of its final velocity in m/s. (*
Ignore gravity)
Round your answer to 0 decimal places.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A parallel-plate capacitor has a plate separation of 1.5 mm and is charged to 900 V. 1) If an electron leaves the negative plate, starting from rest, how fast is it going when it hits the positive plate? (Express your answer to two significant figures.) ×10¹ km/sarrow_forwardA small ball of mass m = 1.010 × 10-¹¹ kg has acquired an excess charge. The ball is then placed between two parallel plates spaced x = 0.00315 m apart, which have a potential difference of V = 2260 V applied across them. In this configuration, the ball appears to be motionless, or floating in between the plates. What is the overall charge on the ball? neutral positive negative Calculate the number of electrons, ne, that the ball has either gained or lost. The acceleration due to gravity is g = 9.81 m/s², and the elementary unit of charge is e = 1.60 × 10-¹⁹ C. ne = x 177 + + + + + + + + + + + + + + +arrow_forwardBased on diagrams in Fig. 2, identify which particle reach the plate first after travelling based on their respective charges and directions. Assuming charge of 1e = 1.6 × 10-19 C, mass of electron 9.1 × 10-31 kilograms and distance between plate for both cases E1 and E2 is 500 cm.arrow_forward
- How do I rearrange this equation so that I am solving for t?arrow_forwardQUESTION 4 An electron is released from rest at the negative plate of a parallel plate capacitor and accelerates to the positive plate. The plates are separated by a distance of 1.39 cm, and the electric field within the capacitor has a magnitude of 1743307 V/m. What is the kinetic energy of the electron just as it reaches the positive plate? (Give your answer in 2 d.p. with scientific notation(i.e. 1.23e-12)} 1 Electric field Electron F + + + + + + + + + +arrow_forwardAn electron is fired at a speed yo = 4.5 x 106 m/s and at an angle D + + + + + + + + Path of the electron 0 00 d X + AV = -45° halfway between two parallel conducting plates that are D = 4.0 mm apart, as in the figure below. The voltage difference between the plates is AV = 135 V. (a) Determine how close, d, the electron will get to the bottom plate. mm (b) Determine the horizontal position where the electron will strike the top plate. (Report the distance from the origin along the x-axis.) mmarrow_forward
- The voltage is constant inside the circular electrodes. What does that mean for the electric field inside the electrode. (the electric field inside a conductor is zero!). Draw arrows from the dots within this electric field to show what would happen?arrow_forwardA cathode-ray tube accelerates electrons to a speed of 26500 kms−1V. What is the potential difference across the tube?arrow_forward1. The magnitude of an electric field became 3.0 x 106 N/C or greater, so that electrical breakdown and thus sparking could occur. 2. The energy of a spark was 150 mJ or greater so that it could ignite the powder explosively. Let us check for the first condition in the powder flow through the plastic pipes. Suppose a stream of negatively charged powder was blown through a cylindrical pipe of radius R = 5.0 cm. Assume that the powder and its charge were spread uniformly through the pipe with a volume charge density p. a. Using Gauss' law, find an expression for the magnitude of the electric field E in the pipe as a function of radial distance r from the pipe center. b. Does E increase or decrease with increasing r? c. Is E directed radially inward or outward? d. For p = 1.1 x 10³ C/m³ (a typical value at the factory), find the maximum E and determine where that maximum field occurs. e. Could sparking occur, and if so, where? From the answer to part (a) of the problem, f. Find an…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON