A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. The pressure relief valve consists of a spring-loaded disk that is positioned over this opening. Consider that a certain portion of a pressure cooker is initially filled with water and put on top of a stove (State - 1). Heat is added just until the pressure relief valve opens (State 2). Heat continues to be added until all of the liquid disappears (State 3). Using the knowledge that you learned in the Thermodynamics-I Course, analyze the operation of this pressure cooker thermodynamically (i.e. find the intensive properties of water such as temperature, pressure and quality, mass of liquid water in the cooker, mass of water vapor that has passed through the pressure relief valve, and time passed for various stages of its operation). Operation and design parameters of the pressure cooker include volume of the cooker, initial volume of water, heat input rate, surrounding pressure, disk diameter, mass of the disk, spring constant, the change in length of the spring, etc. Using resources (e.g. textbooks, reports, websites, etc.), give appropriate numerical values for the operation and design parameters of the pressure cooker and find the results for each stage. Show the processes on a T-v diagram. List any assumptions that you make. Comment on your results considering a practical application.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%

A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. The pressure relief valve consists of a spring-loaded disk that is positioned over this opening.

Consider that a certain portion of a pressure cooker is initially filled with water and put on top of a stove (State - 1). Heat is added just until the pressure relief valve opens (State 2). Heat continues to be added until all of the liquid disappears (State 3).

Using the knowledge that you learned in the Thermodynamics-I Course, analyze the operation of this pressure cooker thermodynamically (i.e. find the intensive properties of water such as temperature, pressure and quality, mass of liquid water in the cooker, mass of water vapor that has passed through the pressure relief valve, and time passed for various stages of its operation). Operation and design parameters of the pressure cooker include volume of the cooker, initial volume of water, heat input rate, surrounding pressure, disk diameter, mass of the disk, spring constant, the change in length of the spring, etc. Using resources (e.g. textbooks, reports, websites, etc.), give appropriate numerical values for the operation and design parameters of the pressure cooker and find the results for each stage. Show the processes on a T-v diagram. List any assumptions that you make. Comment on your results considering a practical application.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 28 images

Blurred answer
Knowledge Booster
Work and Heat
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY