College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam resting on two pivots has a length of L = 6.00 m and mass M = 77.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 61.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. (a) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip. (b) Using the result of part (c) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman's position when the beam is about to tip.x = (c) Check the answer to part (e) by computing torques around the first pivot point.x = (d)Except for possible slight differences due to rounding, is the answer the same for F and E?arrow_forwardA uniform ladder stands on a rough floor and rests against a frictionless wall as shown in the figure. Since the floor is rough, it exerts both a normal force N1 and a frictional force f1 on the ladder. However, since the wall is frictionless, it exerts only a normal force N2 on the ladder. The ladder has a length of L = 4.4 m, a weight of WL = 53.5 N, and rests against the wall a distance d = 3.75 m above the floor. If a person with a mass of m = 90kg is standing on the ladder, determine the following. (a) the forces exerted on the ladder when the person is halfway up the ladder (Enter the magnitude only.) N1 = ? N N2 = ? N f1 = ? N (b) the forces exerted on the ladder when the person is three-fourths of the way up the ladder (Enter the magnitude only.) N1 = ? N N2 = ? N f1 = ? Narrow_forwardL = 2.0 m A diver with a mass of 43 kg is standing 1.3 m from the left end of a diving board. This diving board has a mass of 83 kg and a length of 2 meters. It is supported by a pillar that is 0.5 m from the left end (labeled F, in the figure) and a bolt that holds the left end down (labeled F2 in the figure). What is the magnitude of the force from the pillar, labeled F1. F = What is the magnitude of the force from the end of the board, labeled F2. F2 = What position could the diver stand at to make both F, and F2 a minimum? 3:45 PMarrow_forward
- A 1.0 m long uniform iron bar is balanced on triangular support at its middle with 200 g hanging form it on a string tied 10 cm from the middle and mass m hanging form it on a string tied 40 cm from the middle of the bar. What is the mass m? cc (The triangular support and 200 g mass on a string and mass m on a string are the only things touching the bar.)arrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 87.0 kg. The pivot under the left end exerts a normal force n₁ on the beam, and the second pivot placed a distance = 4.00 m from the left end exerts a normal force n₂. A woman of mass m = 52.0 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. -L- m M (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (Submit a file with a maximum size of 1 MB.) Choose File No file chosen (b) Where is the woman when the normal force n₁ is the greatest? x = L m (c) What is n, when the beam is about to tip? N (d) Use the force equation of equilibrium to find the value of n₂ when the beam is about to tip. N (e) Using the result of part (c) and the torque equilibrium equation, with torques computed…arrow_forwardA uniform disk with mass m = 8.75 kg and radius R = 1.41 m lies in the x-y plane and centered at the origin. Three forces act in the +y- direction on the disk: 1) a force 315 N at the edge of the disk on the +x-axis, 2) a force 315 N at the edge of the disk on the -y-axis, and 3) a force 315 N acts at the edge of the disk at an angle 0 = 38° above the -x-axis. +y +x F3 IF, F2arrow_forward
- A hiker, who weighs 659 N, is strolling through the woods and crosses a small horizontal bridge. The bridge is uniform, weighs 4280 N, and rests on two concrete supports, one on each end. He stops 1/5 of the way along the bridge. What is the magnitude of the force that a concrete support exerts on the bridge (a) at the near end and (b) at the far end?arrow_forwardA 10 m long board has a mass of 7 kg. The left end of the board is against a wall and it sticks straight out like a boom. A rope is tied 1 m from the right end of the board and makes a 44 degree angle with the boom. A 25 kg box hangs 3 m from the right end. Find the tension in the rope.arrow_forwardYou're carrying a 3.4-m-long, 24 kg pole to a construction site when you decide to stop for a rest. You place one end of the pole on a fence post and hold the other end of the pole 35 cm from its tip. How much force must you exert to keep the pole motionless in a horizontal position?arrow_forward
- A fence post of mass m = 8 kg supports a fence with three lengths of barbed wire. The bottom wire is a distance d = 0.35 m from the ground and each wire is a distance 0.35 m above the previous one. Each of these three wires has the tension on it. For this problem, assume that the force exerted by these wires is purely horizontal. An additional guy wire is used to keep the pole upright with a tension of Fa = 490 N. The guy wire attaches to the post at a point h = 0.86 m above the ground and makes an angle of θ = 45 with respect to the horizontal. Write an expression for the tension in any one of the three fence wires. What is the normal force that the ground exerts upward on the post?arrow_forwardA 2.99 m long ladder that has a mass of 5.84 kg leans against a frictionless wall. The coefficient of static friction between the ladder and the floor is 0.589. What is the maximum angle that the ladder can make with the floor without slipping if a 87.6 kg person stands half-way up the ladder? θ = °arrow_forwardA 9 m long board that has a mass of 14. Each end is held up by a vertical rope. A 45 kg box sits 1 m from the left end. Find the tension in the rope on the right. Hint: With forces applied at different places, this is a beam problem pick a pivot point measure all distances from the pivot point Apply Στ = 0 Don't forget torque = force x dist, so you need to multiply the masses by g = 9.8 m/s2 If you need more information, apply ΣF = 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON