College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A person pushes a large block on a horizontal ice surface in a straight line to the right with constant speed, as shown above. The mass of the block is 10�� and frictional forces between the block and the ice are negligible. However, the block has a wide cross-sectional area such that air resistance acting on the block cannot be neglected. The opposite is true for the person: air resistance on the person is negligible, but the person’s shoes do not slip on the ice. The table shows the force exerted by the person on the block for several values of constant speed.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are using a modified block and tackle pulley system to lift a concrete block. You need to lift the concrete block (mass=200kg) a distance of 5 meters upward. The system is designed to reduce the force loaded by a factor of 4. How much rope must you pull down on the other side of the pulley to lift the block the proper distance?arrow_forwardA block of mass m = 1.85 kg is pushed a distance d = 3.15 m along a frictionless horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle ? = 32.0° below the horizontal as shown in the figure below. A block labeled m is on a horizontal surface. An arrow labeled vector F points downward and to the right at an angle ? above the horizontal, and acts upon the upper left corner of the block. A faded image of the block is a distance d to the right of the block. (a) Determine the work done on the block by the applied force.(b) Determine the work done on the block by the normal force exerted by the table.(c) Determine the work done on the block by the force of gravity.(d) Determine the work done by the net force on the block.arrow_forwardIn the back of the truck is a 200kg box that has a coefficient of static friction of 0.8 and a coefficient of kinetic friction of 0.4 between the truck and the box. You are driving on the freeway at 25m/s. There is a car ahead of you that is driving at 30m/s. Your front bumper is 30m behind the back of the first car. You would like to pass the other car and pull back into the same lane when your back bumper is 10m ahead of the front bumper of the first car in 5 seconds. The length of the car ahead of you is 3m and the length of your car is 4m.a) What minimum acceleration do you need to do this?b) What distance does your car travel in that time?c) Does the box in your truck start to slide off the truck?arrow_forward
- A hockey puck with mass 0.163 kg is pushed across the ice with a constant force of 0.37 N. The coefficient of kinetic friction between the puck and the ice is 0.13. After a distance of 1.3 m, what is the puck's speed in m/s?arrow_forwardA worker pushes a 35.0-kg package on a horizontal roller-belt conveyor until it reaches a certain speed. The package then coasts on the horizontal conveyor, all the while slowing down, until it comes to a complete stop after moving 1.20 m. While the package is coasting on the conveyor, the opposing friction force averages 6.00 N. Use the WET to find the speed of the package after the worker pushes it and just as it begins to coast. 0.625 m/s 0.759 m/s 0.600 m/s 0.510 m/s 0.802 m/s 0.641 m/sarrow_forwardA truck is traveling at 14.7 m/s down a hill when the brakes on all four wheels lock. The hill makes an angle of 19 ° with respect to the horizontal. The coefficient of kinetic friction between the tires and the road is 0.789. How far, in meters, does the truck skid before coming to a stop?arrow_forward
- A block of mass m = 2.90 kg is pushed a distance d = 7.80 m along a frictionless horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle ? = 24.0° below the horizontal as shown in the figure below. A block labeled m is on a horizontal surface. An arrow labeled vector F points downward and to the right at an angle ? above the horizontal, and acts upon the upper left corner of the block. A faded image of the block is a distance d to the right of the block. (a) Determine the work done on the block by the applied force. J(b) Determine the work done on the block by the normal force exerted by the table. J(c) Determine the work done on the block by the force of gravity. J(d) Determine the work done by the net force on the block.arrow_forwardA truck is traveling at 10.0 m/s down a hill when the brakes on all four wheels lock. The hill makes an angle of 11 ° with respect to the horizontal. The coefficient of kinetic friction between the tires and the road is 0.933. How far, in meters, does the truck skid before coming to a stop?arrow_forwardA rock rests on a horizontal plane. The plane is slowly tilted so that the angle between the surface and the horizontal increases to 20 degrees, at which point the rock is about to slip. What is the coefficient of static friction between the rock and the surface, to two significant figures? O 0.36 2.2 3.4 9.4 O 13 Oarrow_forward
- Two crates of fruit are released from the top of a ramp inclined at 30 degrees from the horizontal and 4.5 meter long. The two crates consist of an apple crate of mass 20 kg that is placed in front of a watermelon crate of mass 80 kg. The apple crate has a coefficient of friction of 0.20 while the watermelon crate has a coefficient of friction of 0.15. How long does it take the apple crate to reach the bottom of the incline if it needs to travel a distance of 4.5 meters?arrow_forwardIn the figure, a 5.40 kg block is sent sliding up a plane inclined at 0 = 37.0° while a horizontal force F of magnitude 50.0 N acts on it. The coefficient of kinetic friction between block and plane is 0.340. What are the (a) magnitude and (b) direction (up or down the plane) of the block's acceleration? The block's initial speed is 4.40 m/s. (c) How far up the plane does the block go? (d) When it reaches its highest point, does it remain at rest or slide back down the plane? (a) Number i Units (b) (c) Number Units (d)arrow_forwardYour answer is partially correct. of magnitude 50.0 N acts on it. In the figure, a 5.20 kg block is sent sliding up a plane inclined at 0 = 37.0° while a horizontal force The coefficient of kinetic friction between block and plane is 0.330. What are the (a) magnitude and (b) direction (up or down the plane) of the block's acceleration? The block's initial speed is 4.40 m/s. (c) How far up the plane does the block go? (d) When it reache its highest point, does it remain at rest or slide back down the plane? (a) Number i -2.7 (b) down V (c) Number i Units Units m/s^2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON