College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
A pendulum bob of mass m starting at a height of 0.2 m, which is also the string length L) collides with a block of mass 3m at the bottom of its swing.The block proceeds to move d=20 cm along a surface with a coefficient of friction equal to 0.25 before coming to rest.What happens to the pendulum bob after the collision (i.e. how high does it go and in what direction)? Is the collision elastic or inelastic?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two balls of mass m and M are attached by strings of length L. The two balls are initially at rest at an angle θ, and are then released. The balls undergo a totally inelastic collision at the bottom of their swings. Assume that m = 1.7kg, M = 2.8kg, L = 0.80m and θ = 67o.a) Calculate the speed of the balls immediately after the totally inelastic collision.b) To what maximum angle do the conjoined balls rise after the collision?arrow_forwardIn a ballistic pendulum experiment, a small marble is fired into a cup attached to the end of a pendulum. If the mass of the marble is 0.0315 kg and the mass of the pendulum is 0.250 kg, how high ℎ will the pendulum swing if the marble has an initial speed of 5.65 m/s? Assume that the mass of the pendulum is concentrated at its end so that linear momentum is conserved during this collision.arrow_forwardA 7.17 g pellet is shot horizontally from a BB gun at a speed of 24.8 m/s into a 28.7 g wooden block. The wooden block is attached to a spring and lies on a frictionless table. If the collision is inelastic and the spring constant k = 16.0 N/m, what is the maximum compression of the spring?arrow_forward
- A 1.2 kg glider moving at 3.0 m/s [right] undergoes an elastic head-on collision with a glider of equal mass moving at 3.0 m/s [left]. The collision is cushioned by a spring whose spring constant, k, is 6.0 x 104 N/m. Determine the compression in the spring when the second glider is moving left at 1.6 m/s.arrow_forwardI. A lump of clay (m = 3.00 kg) is thrown towards a wall at speed v = 3.00 m/s. The lump sticks to the wall. (a) What kind of collision is it? Is momentum conserved during this collision? Why or why not? (b) Calculate the impulse imparted on the lump by the wall. (c) Calculate percent of initial kinetic energy lost during this collision. II. Same lump is thrown towards the same wall, but this time it bounces off the wall at speed of 3.00 m/s. (a) What kind of collision is it? Is momentum conserved during this collision? Why or why not? (b) Calculate the impulse imparted on the lump by the wall. (c) Calculate percent of initial kinetic energy lost during this collision. III. Same lump is thrown towards the same wall, but this time it bounces off the wall at speed of 2.00 m/s. (a) What kind of collision is it? Is momentum conserved during this collision? Why or why not? (b) Calculate the impulse imparted on the lump by the wall. (c) Calculate percent of initial kinetic energy lost during…arrow_forwardA 29-g rifle bullet traveling 190 m/s embeds itself in a 3.6-kg pendulum hanging on a 2.7-m- long string, which makes the pendulum swing upward in an arc. (a) Calculate velocity of block plus bullet after collision. (b) Determine the vertical height, h of the pendulum's maximum displacement. m M VM = 0 M+ m (a) (b)arrow_forward
- A 11 g bullet is fired into the bob of a ballistic pendulum of mass 1.3 kg. When the bob is at its maximum height, the strings make an angle of 60° with the vertical. The length of the pendulum is 2.3 m. Find the speed of the bullet. m/s еВookarrow_forwardA billiard ball moving at 5.20 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.67 m/s at an angle of 26.0° with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck ball's velocity after the collision. magnitude direction 1.56 × Check the initial and final kinetic energies. You will find that your final kinetic energy is not equal to the initial kinetic energy. m/s ° (with respect to the original line of motion)arrow_forwardA ball is attached to one end of a vwire, the other end being fastened to the ceiling. The wire is held horizontal, and the ball is released from rest (see the drawing). It swings downward and strikes a block initially at rest on a horizontal frictionless surface. Air resistance is negligible, and the collision is elastic. The masses of the ball and block are, respectively, 1.7 kg and 2.5 kg, and the length of the wire is 1.23 m. Find the velocity (magnitude and direction) of the ball (a) just before the collision, and (b) just after the collision. (a) v = i (b) v = i > >arrow_forward
- 1. A lump of clay (m = 3.00 kg) is thrown towards a wall at speed v = 3.00 m/s. The lump sticks to the wall. (a) What kind of collision is it? Is momentum conserved during this collision? Why or why not? (b) Calculate the impulse imparted on the lump by the wallI. (c) Calculate percent of initial kinetic energy lost during this collision. II. Same lump is thrown towards the same wall, but this time it bounces off the wall at speed of 3.00 m/s. (a) What kind of collision is it? Is momentum conserved during this collision? Why or why not? (b) Calculate the impulse imparted on the lump by the wall. (c) Calculate percent of initial kinetic energy lost during this collision. III. Same lump is thrown towards the same wall, but this time it bounces off the wall at speed of 2.00 m/s. (a) What kind of collision is it? Is momentum conserved during this collision? Why or why not? (b) Calculate the impulse imparted on the lump by the wall. (c) Calculate percent of initial kinetic energy lost…arrow_forwardIn the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction is μk and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic? Express your answer in terms of the variables given and g.arrow_forwardIn a ballistic pendulum experiment, a small marble is fired into a cup attached to the end of a pendulum. If the mass of the marble is 0.0235 kg and the mass of the pendulum is 0.250 kg, how high ℎ will the pendulum swing if the marble has an initial speed of 5.95 m/s? Assume that the mass of the pendulum is concentrated at its end so that linear momentum is conserved during this collision.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON