College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A particle of mass m is moving at a speed of 0.8c. It collides with and merges with another particle of the same mass m that is initially at rest. How much larger than 2m, in %, is the mass of the resulting combined particle?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A proton and anti-proton with rest energy of, E0 - 931 MEV/C“ was traveling in opposite direction at a speed of, V = 0.9995*C (where C is a speed of light equal to 3.0 * 108 m/s). After travelling in a vacuum chamber, the two particles collide head on to produce a new massive particle in the center of the chamber What is the new kinetic energy the proton and anti-proton in Giga electron Volt, after reaching the new speed? OKarrow_forwardAn unstable particle is at rest and suddenly breaks up into two fragments. No external forces act on the particle or its fragments. One of the fragments has a velocity of +0.837c and a mass of 1.77 × 10-27 kg, and the other has a mass of 5.29 × 10-27 kg. What is the velocity of the more massive fragment (as a multiple of c)? (Hint: This problem is similar to Example 6 in Chapter 7.) Unstable particle at rest Number i V2 m2 Units m1 V1 Recoiling fragmentsarrow_forwardAn unstable particle at rest breaks up into two fragments of unequal mass. The mass of the lighter fragment is equal to 3.20 ✕ 10−28 kg and that of the heavier fragment is 1.71 ✕ 10−27 kg. If the lighter fragment has a speed of 0.893c after the breakup, what is the speed of the heavier fragment? ?carrow_forward
- An unstable particle is at rest and suddenly breaks up into two fragments. No external forces act on the particle or its fragments. One of the fragments has a velocity of +0.811c and a mass of 1.57 × 10-27 kg, and the other has a mass of 5.98 × 10-27 kg. What is the velocity of the more massive fragment (as a multiple of c)? (Hint: This problem is similar to Example 6 in Chapter 7.) Unstable particle at rest V2 m2 m1 V1 Recoiling fragmentsarrow_forward12. (a) A particle is traveling through the Earth's atmosphere at a speed of 0.750c. To an earth bound observer, the distance it travels is 2.5km. How far does the particle travel in the particle's frame of reference? (b) Calculate the momentum of an electron traveling at a speed 0.985c? The rest mass of the electron is 9.11 X 10-31 kg.arrow_forwardA futuristic rocket ship of mass m,hip = 6.0 × 10° kg is sent into space carrying one person with the goal of traveling to nearby stars. The ship uses a newly discovered matter-antimatter drive that converts matter into energy at 100% efficiency. We will take Earth as the rest frame. For parts (a) through (d) you are interested in the portion of the spaceship's travel where it is using its drive to convert matter into the kinetic energy of the ship. (a) What is the speed of the ship when the work done by the ship's drive is equal to 150,000 TWh (the total energy used by humanity in 2014)? (b) How much work must the drive do for the rocket to reach a final speed of 0.95c? (c) How much matter would the drive need to annihilate in order for the ship to reach the final speed of 0.95c? Assume that the matter used in the antimatter drive is collected from the interstellar medium and that the mass of the ship remains constant. (d) When at the final speed of 0.95c, by what factor is the ship's…arrow_forward
- I have a physics question as follows: An electron has a speed of 0.775c. (a) Find the speed of a proton that has the same kinetic energy as the electron (c) (b) Find the speed of a proton that has the same momentum as the electron (c)arrow_forwardAstrophysics 14 Use Newton's second law, F = dp/dt, and the formula for relativistic momentum, Eq. ( 44), to show that the acceleration vector a = dv/dt produced by a force F acting on a particle of mass m is F (F. v), ymc² Ym where F· v is the vector dot product between the force F and the particle velocity v. Thus the acceleration depends on the particle's velocity and is not in general in the same direction as the force. mv p = /1 – v²/c² = ymv (44) VI -arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON