College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A particle is moving along a circular path of 2-m radius such that its position as a function of time is given by theta = (5t^2) rad, where t is in seconds. Determine the magnitude of the particle’s acceleration when theta = 30°. The particle starts from rest when u = 0°.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle moves horizontally in uniform circular motion, over a horizontal xy plane. At one instant, it moves through the point at coordinates (4.00 m, 4.00 m) with a velocity of -5.00 m/s i and an acceleration of -12.5 (m/s^2) j . What are the (a) x and (b) y coordinates of the center of the circular path?arrow_forwardUse the given acceleration function and initial conditions to find the velocity vector v(t), and position vector r(t). Then find the position at time t = 3. a(t) = 8i + 4k v(0) = 5j, r(0) = 0 v(t) = r(t) = r(3) =arrow_forwarda ball is thrown straight up in the air , initial velocity, vi = 2.5 m/s y. How long does it take the ball to reach its peak height, delta t peak? What is the ball's peak height, h peak.arrow_forward
- The position of a particle is described byr = (t3+ 4t –4) m and θ = (t3/2) rad, where t is inseconds. Determine the magnitudes of the particle’svelocity and acceleration at the instant t = 2 s.arrow_forwardA marble slides down on a curved path defined by the parabola y = 0.4x2. When it is at point “A” (xA = 2m; yA = 1.6m), the velocity of the marble v = 8m/s and the tangental acceleration due to gravity is dv / dt = 4ms2. Calculate the normal component and the total magnitude of the accelarion of the mable in that instant.arrow_forwardA soldier is tasked with measuring the muzzle velocity of a new rifle. Knowing the principles of projectile motion, he decides to perform a simple experiment at the indoor firing range. The soldier hangs a target a distance of ?=114 m from the end of the barrel. The rifle is mounted so that the bullet exits moving horizontally at the same height as the bullseye. After six trials, the soldier tabulates the values he measured for the vertical distance ℎ from the bullseye to the bullet strike. What is the most accurate muzzle velocity that the soldier can report to his sergeant? vm=______m/sarrow_forward
- A particle confined to the xy-plane is in uniform circular motion around the origin. The x- and y-coordinates of the particle vary with time as follows: x(t) = r sin(cot) y(t) = r cos(cot). where >= 2.60 m and c = 2.15 s-¹. What are the x- and y-components of the particle's acceleration at an instant when x = 1.00 m and y = 2.40 m. Give your answers by entering numbers into the empty boxes below. ax || || X x² ms ms-2.arrow_forwardThe figure below shows an object initially at point A traveling in the +x-direction. It turns in a circular path at constant speed until it is traveling in the +y-direction at point C. The quarter-circle arc from A to C is 239 m in length, and the particle moves from A to C in 33.0 s. Point B on the path is 35.0° below the x-axis. O 35.0⁰ magnitude direction C B x (a) What is the speed of the object (in m/s)? m/s (b) What is the magnitude and direction of the acceleration when the object is at point B? (Enter the magnitude in m/s² and the direction in degrees counterclockwise from the +x-axis.) m/s² ° counterclockwise from the +x-axisarrow_forwardA particle moves in a circular path at constant speed. The initial location of the particle is (4.24 m, 6.05 m) at t = 4 s. The velocity of the particle at this time is 3.02 m/s 3 (i.e., directed along the positive y-axis). Acceleration at this time is along the +x axis. At t=10.6 s, v is -3.02 m/s i and the acceleration is directed along the +y axis. Find the radius of the circle. For this problem assume the time interval is less than one full period. T Find the x-coordinate of the center of the circle (in meters): Xcenter m = m Question Help: Readarrow_forward
- A particle moves in a circular path at constant speed. The initial location of the particle is (5.28 m, 6.11 m) at t = 3.6 s. The velocity of the particle at this time is 3.05 m/s 3 (i.e., directed along the positive y-axis). Acceleration at this time is along the +x axis. At t=10.76 s, vis -3.05 m/s and the acceleration is directed along the +y axis. Find the radius of the circle. For this problem assume the time interval is less than one full period. T = m Find the x-coordinate of the center of the circle (in meters): center m Question Help: Read Submit Questionarrow_forwarda lump of wet putty moves in uniform circular motion as it rides at a radius of 20.0 cm on the rim of a wheel rotating counterclockwise with a period of 5.00 ms.The lump then happens to fly off the rim at the 5 o’clock position (as if on a clock face). It leaves the rim at a height of h = 1.20 m from the floor and at a distance d = 2.50 m from a wall.At what height on the wall does the lump hit?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON