A parallel-sided PLZT plate is positioned between two crossed Polaroid plates and the major faces of all three elements are normal to a parallel beam of monochromatic light (1 = 750 nm). The thickness of the PLZT plate is 1 mm and the electrodes, spaced 1 mm apart, are arranged such that a uniform electric field can be applied through the volume of the PLZT plate parallel to its major faces and at 45° to the transmission axis of each Polaroid plate. Calculate the voltage that must be applied between the electrodes to achieve maximum light transmittance through the system. Estimate the transmittance assuming 5% loss at each Polaroid surface and assuming that the PLZT element
A parallel-sided PLZT plate is positioned between two crossed Polaroid plates and the major faces of all three elements are normal to a parallel beam of monochromatic light (1 = 750 nm). The thickness of the PLZT plate is 1 mm and the electrodes, spaced 1 mm apart, are arranged such that a uniform electric field can be applied through the volume of the PLZT plate parallel to its major faces and at 45° to the transmission axis of each Polaroid plate. Calculate the voltage that must be applied between the electrodes to achieve maximum light transmittance through the system. Estimate the transmittance assuming 5% loss at each Polaroid surface and assuming that the PLZT element
Related questions
Question
H4
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps