Question
A nylon guitar string has a linear density of 7.2 g/m and is under a tension of 150 N. The fixed supports are distance D=90.0 cm apart. The string is oscillating in the standing wave pattern shown below. Calculate the frequency of the traveling wave whose superposition gives the standing wave below. Hint: First determine the wave speed then determine the wavelength based on standing wave geometry. Then determine the frequency based upon the velocity and wavelength.

Transcribed Image Text:-D-
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 7 images

Knowledge Booster
Similar questions
- 0.0058 kg/m is fixed at both ends. A 5.0-kg mass is hung from A string with a linear mass density of the string, as shown. If a pulse is sent along section A, what is the wave speed in section A and the wave speed in section B? %D B. A FA 35° 5 kg Image Description VA m/s VB = m/s B.arrow_forwardChapter 17, Problem 020 The figure shows four isotropic point sources of sound that are uniformly spaced on an x axis. The sources emit sound at the same wavelength and same amplitude sm, and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to P, the decrease in their amplitude is negligible. What multiple of sm is the amplitude of the net wave at P if distance d in the figure is (a)1A, (b)2, and (c)4/? (a) Number (b) Number (c) Number Units Units Units S₁ Sa Sa + S₁arrow_forwardplease answer parts c, d, and earrow_forward
- QUESTION 5 A transverse wave completes 12 full oscillations in two seconds. The wave moves at 31.2 m/s. Find the distance between two adjacent crests on the wave (in m). QUESTION 6 The linear density of a guitar string is 8.0 x 104 kg/m. A wave on the string has a frequency of 400 Hz and a wavelength of 60 cm. What is the tension in the string? QUESTION 7 The mathematical expression of a wave is given by y = 4.2 m Sin ( 1.2 rad/m x – 9.6 rad/s t). What is the speed of the wave (in m/s)? QUESTION 8 What is the sound intensity (in µW/m2) at 1.86 m from a 4 mW loudspeaker emitting sound uniformly in all directions?arrow_forwardA sinusoidal wave in a rope is described by the wave function y = 0.20 sin (0.85xx + 22xt) where x and y are in meters and t is in seconds. The rope has a linear mass density of 0.220 kg/m. The tension in the rope is provided by an arrangement like the one illustrated in the figure below. What is the mass of the suspended object? kgarrow_forwardTension is maintained in a string as in the figure below. The observed wave speed is v = 199 m/s when the suspended mass is m = 3.0 kg. (a) What is the mass per unit length of the string? _______________kg/m(b) What is the wave speed when the suspended mass is m = 2.28 kg? _________________m/sarrow_forward
arrow_back_ios
arrow_forward_ios