A number X is randomly selected from the interval [10, 15]. The PDF of X is 1 15 - 10 0 1. Find the expectation E[X] of X. 2. Find the variance Var(X) of X. (E[X], Var(X)) = 12.5000,2.0833 fx(x) = if x = [10, 15], Otherwise.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
100%

How was the correct answer of 12.5000 and 2.0833 attained?

A number X is randomly selected from the interval [10, 15]. The PDF of X is
1
15 - 10
0
1. Find the expectation E[X] of X.
2. Find the variance Var(X) of X.
(E[X], Var(X)) = 12.5000,2.0833
fx(x) =
if x = [10, 15],
Otherwise.
Transcribed Image Text:A number X is randomly selected from the interval [10, 15]. The PDF of X is 1 15 - 10 0 1. Find the expectation E[X] of X. 2. Find the variance Var(X) of X. (E[X], Var(X)) = 12.5000,2.0833 fx(x) = if x = [10, 15], Otherwise.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer