A non-uniformly charged insulating sphere has a volume charge density p that is expressed as p= Br where Bis a constant, and ris the radius from the center of the sphere. If the, the total charge of the sphere is Q and its maximum radius is R. What is the value for Sol. By definition, the volume charge density is expressed infinitesimally as p= where in is the infinitesimal charge and is the infinicesimal volume. 5o. we have %3D so we can write this as dq = B dv But. dv = dr

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
A non-uniformiy charged insulating sphere has a volume charge density p that is expressed as
p= Br
where Bis a constant, and ris the radius from the center of the sphere. If the, the total charge of the sphere is Q and its maximum radius is R. What is the value for B?
Sol.
By definition, the volume charge density is expressed infinitesimally as
p=
where in
is the infinitesimal charge and
is the infinitesimal volume.
so, we have
p = dal
- B
So we can write this as
dg
= B
dV
But,
dV =
dr
By substitution, we get the following
dq = 4BT
dr
Using Integration operation and evaluating its limits, the equation, leads to
Q =
Rearranging, we get
B =
Transcribed Image Text:A non-uniformiy charged insulating sphere has a volume charge density p that is expressed as p= Br where Bis a constant, and ris the radius from the center of the sphere. If the, the total charge of the sphere is Q and its maximum radius is R. What is the value for B? Sol. By definition, the volume charge density is expressed infinitesimally as p= where in is the infinitesimal charge and is the infinitesimal volume. so, we have p = dal - B So we can write this as dg = B dV But, dV = dr By substitution, we get the following dq = 4BT dr Using Integration operation and evaluating its limits, the equation, leads to Q = Rearranging, we get B =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON