College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A newly discovered bright star has a luminosity of 78.4×1026 W. What is its temperature if it has a radius of ~1.2x106 km?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Astronomers use two basis properties of stars to classify them. These two properties are luminosity and surface temperature. Luminosity usually refers to the brightness of the star relative to the brightness of our sun. Astronomers will often use a star’s color to measure its temperature. Stars with low temperatures produce a reddish light while stars with high temperatures shine with a brilliant blue—white light. Surface temperatures of stars range from 3000o C to 50,000o C. When these surface temperatures are plotted against luminosity, the stars fall into groups. Using the data similar to what you will plot in this activity, Danish astronomer Ejnar Hertzsprung and United States astronomer Henry Norris Russell independently arrived at similar results in what is now commonly referred to as the HR Diagram. Procedures:1. Read the Background Information 2. On the graph paper provided. Place a number next to the star according to its luminosity and surface temperature listed in the data…arrow_forwardA main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.arrow_forwardA star has a peak output at 440 nm and has a luminosity of 3 solar luminosities. What is its radius? (LS=3.826 X 1026 J/s)arrow_forward
- Betelgeuse is a nearby supergiant that will eventually explode into a supernova. Let's see how awesome it would look. At peak brightness, the supernova will have a luminosity of about 10 billion times the Sun. It is 600 light-years away. All stellar brightnesses are compared with Vega, which has an intrinsic luminosity of about 60 times the Sun, a distance of 25 light-years, an absolute magnitude of 0.6 and an apparent magnitude of 0 (by definition). a) At peak brightness, how many times brighter will Betelgeuse be than Vega? b) Approximately what apparent magnitude does this correspond to? c) The Sun is about -26.5 apparent magnitude. What fraction of the Sun's brightness will Betelgeuse be?arrow_forwardAn eclipsing binary will a. be more luminous than a visual binary. b. always be a spectroscopic binary. c. give off most of its light in the infrared. d. show a constant Doppler shift in its spectral lines. e. show two stars with variable proper motion.arrow_forwardImagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of 58 m/s over the 3.3 day orbit of the planet. What is the mass of the planet in kg? Assume the star has the same mass as the Sun (2.0 x1030 kg), there are 365.25 days in a year, and 1AU = 1.5 x 1011 m.arrow_forward
- What is the luminosity of a star having four times the radius of the Sun and a surface temperature of 8,000 K?arrow_forwardImagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of 58 m/s over the 3.3 day orbit of the planet. What is the mass of the planet in kg? Assume the star has the same mass as the Sun (2.0 x1030 kg), there are 365.25 days in a year, and 1AU = 1.5 x 1011 m.arrow_forwardA star has a radius of 2RO and has a temperature of 3TO. Calculate the luminosity in solar units.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON