A new type of force was discovered by physicists with the following expression: where alpha & beta are constants, and x is the position. The expression above was obtained from the interaction of a massless Higgs Boson (a type of particle) and a black hole. Quantum physicists then decides to design and build a machine that is able to move the Higgs Boson from x2 to x1. How much work should the machine do to achieve this feat? (For simplicity, consider that no energy is lost in the process) Solution To determine the work done we apply the following Evaluating the above, we get W = W = I substituting x₁ and x2 as the limits, the work done is expressed as = S³' + Be + 3x4 W = dx for the limits from x₁ to xf X1

Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Paul W. Zitzewitz
Chapter10: Work, Energy And Machines
Section: Chapter Questions
Problem 89A
icon
Related questions
Topic Video
Question

answer with solutions please

A new type of force was discovered by physicists with the following expression:
To determine the work done we apply the following
Evaluating the above, we get
where alpha & beta are constants, and x is the position. The expression above was obtained from the interaction of a massless Higgs Boson (a type of particle) and a black hole.
Quantum physicists then decides to design and build a machine that is able to move the Higgs Boson from x2 to x1. How much work should the machine do to achieve this feat? (For
simplicity, consider that no energy is lost in the process)
Solution
W =
substituting x₁ and x2 as the limits, the work done is expressed as
W =
I
F
-S
W =
new
a
+ Be + 3x4
dx
for the limits from x₁ to xf
(
x15 -
x25 )
x1
Transcribed Image Text:A new type of force was discovered by physicists with the following expression: To determine the work done we apply the following Evaluating the above, we get where alpha & beta are constants, and x is the position. The expression above was obtained from the interaction of a massless Higgs Boson (a type of particle) and a black hole. Quantum physicists then decides to design and build a machine that is able to move the Higgs Boson from x2 to x1. How much work should the machine do to achieve this feat? (For simplicity, consider that no energy is lost in the process) Solution W = substituting x₁ and x2 as the limits, the work done is expressed as W = I F -S W = new a + Be + 3x4 dx for the limits from x₁ to xf ( x15 - x25 ) x1
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Mechanical Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning