
A new parabolic dish solar concentrator is being developed to supply electricity to a small remote community. The system operates with a Stirling engine connected to two heat reservoirs HR₁ and HR₂ as shown in Fig. Concentrated solar radiation Q˙ₛᵤₙ=200kW maintains HR₁ at constant temperature Tₕᵣ,₁=700℃, and a high performance heat sink device maintains HR₂ at temperature Tₕᵣ,₂=25℃. After some time of operation, an engineer working on the project realizes that the engine power output is performing below design specifications and only provides a power output of 120kW. After inspecting the system, they discover a contact resistance that causes the thermal communication between the two heat reservoirs and the engine to be imperfect in the sense that a finite temperature difference is required to establish heat transfer between each of the heat reservoirs and the engine.
Assuming the engine itself is internally reversible, estimate the rate of entropy generation in the engine’s surroundings due to the poor thermal communication.


Step by stepSolved in 2 steps with 1 images

- Q4/ A particular power plant operates with a heat source reservoir at 350 °C and a heat sink reservoir at 30 °C. It has a thermal efficiency equal to 55% of the Carnot engine therma' efficiency for the same temperatures. 1. What is the thermal efficiency of the plant? 2. To what temperature must the heat source reservoir be raised to increase the thermal efficiency of the plant to 35%?arrow_forwardAsking second time , Strictly don't use chatgpt. I need to understand the concept,give detailed solution in Handwritten format.arrow_forwardB) A reversible heat engine operates between two reservoirs at temperatures of 600°C and 40°C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 40°C and -20°C. The heat transfer to the heat engine is 2000 kJ and the net work output for the combined engine refrigerator is 360 kJ. (i) Calculate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40°C. (ii) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrigerator are each 40 per cent of their maximum possible values.arrow_forward
- Heat Engine you are an engineering consultant who has been tasked with providing power to a remote village. After some initial evaluation it was determined that a simple four-device heat engine with water as the working fluid is the best option to produce electricity at the location. Natural gas and wood are abundantly available as a fuel source and 400 kW of power is needed. Design a heat engine to meet the stated requirements.arrow_forwardA "cold room" used for low-temperature research is maintained at a constant temperature of 7.00°C. The refrigeration unit vents to outdoor air which is at 27.0°C. The rate at which energy is exhausted to the outdoors is 18.0 kW. The coefficient of performance (COP) of the refrigeration unit is equal to 40.0% of the COP of an ideal Carnot refrigerator. (a) At what rate (in kW) does the refrigeration unit remove energy from the room? (Round your answer to at least two decimal places.) kW (b) What is the power input (in kW) required by the refrigeration unit? kW (c) What is the entropy change of the Universe (in J/K) produced by the refrigeration unit after it operates for 3.00 h? J/K (d) If the outside temperature increases to 33.0°C, what is the percent change in the COP of the refrigeration unit? (Include the sign of the value in your answer.) % Need Help? Read Itarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





