A muon (an elementary particle) enters a region with a speed of 5.45 x 106 m/s and then is slowed at the rate of 1.30 x 1014 m/s². (a) How far does the muon take to stop? m (b) Graph x versus t for the muon. x (m) 0.12 0.10 0.08 0.06 0.04 0.02 O x (m) 0.12 0.10 0.08 0.06 0.04 0.02 Graph v versus t for the muon. v (m/s) 6x106 5x106 4x106 3x106 2x106 O 1x106 v (m/s) 6x10 5x10 4x10 3x106 10 2x10 1x106 10 Enter a number. Additional Materials 10 20 10 20 20 30 20 30 6x 10° 5x106 LL 4x106 3x10 2x106 1x106 t (ns) 30 40 30 40 40 t (ns) 40 t (ns) t (ns) x (m) 0.12 0.10 0.08 0.06 0.04 0.02 O x (m) 0.12 0.10 0.08 0.06 0.04 0.02 v (m/s) v (m/s) 6x106 5x10 4x106 3x106 2x106 1x106 10 10 10 20 10 20 20 30 20 30 30 30 -t (ns) 40 40 40 40 t (ns) t (ns) t (ns)
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Step by step
Solved in 2 steps