College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A mover puts in 40.0 Newton’s of force to push a dresser up an inclined plane. The distance that the dresser moves up the incline is 5.2 meters. If the dresser has a weight of 86.0 Newton’s, what is the distance out achieved by using the incline?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bowling ball weighing 54.0 N initially moves at a speed of 5.60 m/s. How long must a force of 36.0 N be applied to the ball to stop it?arrow_forwardA hockey puck with mass 0.163 kg is pushed across the ice with a constant force of 0.37 N. The coefficient of kinetic friction between the puck and the ice is 0.13. After a distance of 1.3 m, what is the puck's speed in m/s?arrow_forwardA commercial airplane is coming in for a landing. Just before it hits the runway it is moving at 76 m/s. The plane has a mass of 20,000 kg. The runway is 1.6km long and, obviously, the airplane needs to be stopped before it reaches the end of the runway. How large is the braking force the airplane needs to stop safely before the end of the runway?arrow_forward
- A 47,700 N car is traveling a 25 m/s. The brakes are applied suddenly, and the car slides to a stop. The average braking force between the tires and the road is 7100 N. How far will the car slide once the brakes are applied?arrow_forwarda person is pushing a 50 kg block across the ground at a constant speed of 10m/s with a force of 100 N, using a lever inclined angle of 20 degrees. What is the normal force on the box?arrow_forwardA two-man bobsled has a mass of 290 kg. Starting from rest, the two racers push the sled for the first 50 m with a net force of 370 N. Neglecting friction, what is the sled's speed at the end of the 50 m? 7.8 m/s 2.9 m/s 11.3 m/s 8.9 m/s 4.7 m/sarrow_forward
- The froghopper holds the title of the best jumper of the animal world. A 0.0198-gram (1.98 X 10-5 kg) froghopper can accelerate from 0m/s to 4m/s in only one one thousandth of a second (0.001 s) as it jumps. What is the force delivered to the froghopper as it makes this jump?arrow_forwardChristian is making a Tyrolean traverse as shown in the figure. That is, he traverses a chasm by stringing a rope between a tree on one side of the chasm and a tree on the opposite side, 25 m away. The rope must sag sufficiently so it won't break. Assume the rope can provide a tension force of up to 26 kN before breaking, and use a "safety factor" of 10 (that is, the rope should only be required to undergo a tension force of 2.6 kN) at the center of the Tyrolean traverse. Figure 1 of 1 > Part A Determine the distance that the rope must sag if it is to be within its recommended safety range and Christian's mass is 72.0 kg Express your answer using two significant figures. x= Submit Part B T= VG| ΑΣΦ Submit Request Answer If the Tyrolean traverse is incorrectly set up so that the rope sags by only one-fourth the distance found in part A, determine the tension force in the rope. (Figure 1) Express your answer using two significant figures. —| ΑΣΦ ? Request Answer m ? Narrow_forwardA shopper in a supermarket pushes a loaded cart with a horizontal force of 8 N. The cart has a mass of 26 kg. (a) How far will it move in 7.0 s, starting from rest? (Ignore friction.) m(b) How far will it move in 7.0 s if the shopper places his 30 N child in the cart before he begins to push it?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON