A MO scheme for CO2 is shown below. Fill in the electrons for both the atoms and the molecule. Notice that since there are 2 oxygens, there are six p orbitals and two s orbitals associated with the right hand column of the MO scheme. Determine which orbitals are bonding vs. nonbonding, vs. antibonding and calculate the bond order. Notice that the names of the MO’s are no longer s and p - they have other names. (Hint: bonding vs. antibonding vs. nonbonding can be figured out based on the energy of the MOs and the positioning of the dashed lines.) Compare the bond order to the valence bond picture of CO2, [O=C=O]. How are they related?
A MO scheme for CO2 is shown below. Fill in the electrons for both the atoms and the molecule. Notice that since there are 2 oxygens, there are six p orbitals and two s orbitals associated with the right hand column of the MO scheme. Determine which orbitals are bonding vs. nonbonding, vs. antibonding and calculate the bond order. Notice that the names of the MO’s are no longer s and p - they have other names. (Hint: bonding vs. antibonding vs. nonbonding can be figured out based on the energy of the MOs and the positioning of the dashed lines.) Compare the bond order to the valence bond picture of CO2, [O=C=O]. How are they related?
To identify the bonding, antibonding and non-bonding orbitals of the carbon dioxide given that the molecular orbital diagram of carbon dioxide will be as follows:
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 2 images