A mining company owns two mines, each of which produces three grades (high, medium, and low) of ore. The company has a contract to supply a smelting company with at least 12 tons of high-grade ore, at least 8 tons of medium-grade ore, and at least 24 tons of low-grade ore. Each hour of operation, mine 1 produces 6 tons of high-grade ore, 2 tons of medium-grade ore, and 4 tons of low-grade ore. Each hour of operation, mine 2 produces 2 tons of high-grade ore, 2 tons of medium-grade ore, and 12 tons of low-grade ore. It costs $200 per hour to operate mine 1 and $160 per hour to operate mine 2. How many hours should each mine be operated so as to meet the contractual obligations at the lowest total operating cost? D 1 Microsoft Excel 16.0 Sensitivity Report 2 Worksheet: [2.xlsx]solution 3 Report Created: 10/26/2019 7:20:34 PM 4 4567 6 Variable Cells 7 8 9 10 Cell Name $B$3 X1 Hours to operate Mine 1 $C$3 X2 Hourse to operate Mine 2 11 12 Constraints 13 14 Cell Name 15 $E$6 High-grade constraint LHS 16 17 $E$8 Low-grade constarint LHS $E$7 Medium-grade constarint LHS Final Reduced Objective Allowable Allowable Value Cost Coefficient Increase Decrease 280 40 93.33333333 1 3 0 0 None of the above 200 160 Final Shadow Constraint Allowable Value Price R.H. Side Increase 12 8 40 10 70 0 12 8 24 8 4 16 40 Allowable Decrease 2 1E+30 Use this sensitivity report to answer the questions below. If the (minimum) requirements increased by 2 tons for each of high-grade, medium-grade, and low-grade ore: What minimum Cost could be realized? Would the optimal solution change? The sum of percentages ≥100%, the shadow prices are not operative. Not enough information provided. Thus, we should create a new model and rerun solver to answer this question. The sum of percentages ≤ 100%, the shadow prices are operative. The minimum cost would be $840. The optimal solution will not change. The sum of percentages ≤ 100%, the shadow prices are operative. The minimum cost would be $840. The optimal solution would change.
A mining company owns two mines, each of which produces three grades (high, medium, and low) of ore. The company has a contract to supply a smelting company with at least 12 tons of high-grade ore, at least 8 tons of medium-grade ore, and at least 24 tons of low-grade ore. Each hour of operation, mine 1 produces 6 tons of high-grade ore, 2 tons of medium-grade ore, and 4 tons of low-grade ore. Each hour of operation, mine 2 produces 2 tons of high-grade ore, 2 tons of medium-grade ore, and 12 tons of low-grade ore. It costs $200 per hour to operate mine 1 and $160 per hour to operate mine 2. How many hours should each mine be operated so as to meet the contractual obligations at the lowest total operating cost? D 1 Microsoft Excel 16.0 Sensitivity Report 2 Worksheet: [2.xlsx]solution 3 Report Created: 10/26/2019 7:20:34 PM 4 4567 6 Variable Cells 7 8 9 10 Cell Name $B$3 X1 Hours to operate Mine 1 $C$3 X2 Hourse to operate Mine 2 11 12 Constraints 13 14 Cell Name 15 $E$6 High-grade constraint LHS 16 17 $E$8 Low-grade constarint LHS $E$7 Medium-grade constarint LHS Final Reduced Objective Allowable Allowable Value Cost Coefficient Increase Decrease 280 40 93.33333333 1 3 0 0 None of the above 200 160 Final Shadow Constraint Allowable Value Price R.H. Side Increase 12 8 40 10 70 0 12 8 24 8 4 16 40 Allowable Decrease 2 1E+30 Use this sensitivity report to answer the questions below. If the (minimum) requirements increased by 2 tons for each of high-grade, medium-grade, and low-grade ore: What minimum Cost could be realized? Would the optimal solution change? The sum of percentages ≥100%, the shadow prices are not operative. Not enough information provided. Thus, we should create a new model and rerun solver to answer this question. The sum of percentages ≤ 100%, the shadow prices are operative. The minimum cost would be $840. The optimal solution will not change. The sum of percentages ≤ 100%, the shadow prices are operative. The minimum cost would be $840. The optimal solution would change.
Practical Management Science
6th Edition
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:WINSTON, Wayne L.
Chapter2: Introduction To Spreadsheet Modeling
Section: Chapter Questions
Problem 20P: Julie James is opening a lemonade stand. She believes the fixed cost per week of running the stand...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Practical Management Science
Operations Management
ISBN:
9781337406659
Author:
WINSTON, Wayne L.
Publisher:
Cengage,
Operations Management
Operations Management
ISBN:
9781259667473
Author:
William J Stevenson
Publisher:
McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi…
Operations Management
ISBN:
9781259666100
Author:
F. Robert Jacobs, Richard B Chase
Publisher:
McGraw-Hill Education
Practical Management Science
Operations Management
ISBN:
9781337406659
Author:
WINSTON, Wayne L.
Publisher:
Cengage,
Operations Management
Operations Management
ISBN:
9781259667473
Author:
William J Stevenson
Publisher:
McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi…
Operations Management
ISBN:
9781259666100
Author:
F. Robert Jacobs, Richard B Chase
Publisher:
McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:
9781285869681
Author:
Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:
Cengage Learning
Production and Operations Analysis, Seventh Editi…
Operations Management
ISBN:
9781478623069
Author:
Steven Nahmias, Tava Lennon Olsen
Publisher:
Waveland Press, Inc.