College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A metal rod of length 1 m moves perpendicular to the magnetic field of 0.2 T. An EMF of 0.25 V exists between the ends of the rod. How far does the rod move in 10 s?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The magnetic field produced by the solenoid in a magnetic resonance imaging (MRI) system designed for measurements on whole human bodies has a field strength of 8.83 T, and the current in the solenoid is 3.08 × 102 A. What is the number of turns per meter of length of the solenoid? Number i Units >arrow_forwardIn the figure (Figure 1) a conducting rod of length L = 31.0 cm moves in a magnetic field B of magnitude 0.480 T directed into the plane of the figure. The rod mc with speed v = 5.30 m/s in the direction shown. Figure X X X X X b X χαχ X X 1 of 1 X X X What is the potential difference between the ends of the rod? Express your answer in volts. NO | ΑΣΦΑ ▼ V = Submit Part B Which point, a or b, is at higher potential? b Submit Part C Request Answer E = Submit Request Answer When the charges in the rod are in equilibrium, what is the magnitude of the electric field with Express your answer in volts per meter. VG ΑΣΦΑ V Request Answer V/marrow_forwardA conducting rod of length = 35.0 cm is free to slide on two parallel conducting bars as shown in the figure below. Two resistors R₁ = 2.00 and R₂ = 5.00 are connected across the ends of the bars to form a loop. A constant magnetic field B = 2.10 T is directed perpendicularly into the page. An external agent pulls the rod to the left with a constant speed of v = 7.65 m/s. Find the following. R₁ www xxx x x *=* X x * X x x xxx (a) the currents in both resistors 2.00- resistor 5.00- resistor N xxx xxx X A A X X xxxx x xxxxxx * * x xxxx M * R₂ (b) the total power delivered to the resistance of the circuit W (c) the magnitude of the applied force that is needed to move the rod with this constant velocityarrow_forward
- A piece of copper wire has a resistance per unit length of 5.12 × 10-3/m. The wire is wound into a thin, flat coil of many turns that has a radius of 0.149 m. The ends of the wire are connected to a 12.0-V battery. Find the magnetic field strength at the center of the coil.arrow_forwardA piece of copper wire has a resistance per unit length of 5.40 × 10³/m. The wire is wound into a thin, flat coil of many turns that has a radius of 0.118 m. The ends of the wire are connected to a 12.0-V battery. Find the magnetic field strength at the center of the coil. Number Unitsarrow_forwardA chlorine ion (CI) in a salt water solution is moving at a speed of 1 cm/s. The salt water is placed into a 50 mT magnetic field. Assuming that the ion is free to move around in the salt solution, and that it undergoes no interaction with other ions, what is the maximum force that it will be subjected to? 5 x 10-22 N O ON 8 x 10-23 N - 6 x 10-21 N O - 8 x 10-23 Narrow_forward
- A proton is accelerated from rest through 2.0 kV. It then enters a uniform magnetic field of 0.30 T that is oriented perpendicular to its direction of motion. What is the radius of the path the proton follows in the magnetic field? O 11 cm O 11 mm O 22 cm O 1.1 m O 22 mmarrow_forwardThe loop in the figure is being pushed into the 0.20 T magnetic field at 45 m/s . The resistance of the loop is 0.50 N. (Figure 1) You may want to review (Pages 849 - 851) . Figure 1 of 1 V В 5.0 cmarrow_forwardThe 12.0 cm long rod as shown moves at 4.00 m/s.What is the strength of the magnetic field if a 95.0 V emf isinduced?arrow_forward
- The magnetic field inside an air-filled solenoid 40 cm long and 3.0 cm in diameter is 0.64 T. Approximately how much energy is stored in this field?arrow_forwardIn the figure below, a metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end. A magnetic field = 0.370 T points out of the page. (a) If the rails are separated by 28.0 cm and the speed of the rod is 70.0 cm/s, what emf is generated? V(b) If the rod has a resistance of 16.0 Ω and the rails and connector have negligible resistance, what is the current in the rod? (Include the sign, taking counterclockwise to be positive.) A(c) At what rate is energy being transferred to thermal energy? Warrow_forwardThe magnetic field inside an air-filled solenoid 40.0 cm long and 3.00 cm in diameter is 0.535 T . Approximately how much energy is stored in this field?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON