College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A metal rod is pulled along two frictionless,
0.00 (no voltage)
2.26 V
0.29 V
3.23 V
24.85 V
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 2.00 cm diameter, 14.0 cm long solenoid has 60.0 turns and has a 1.00 cm diameter loop inside it. The loop has a resistance of 0.400 Ω. What is the current in the loop at 0.00600 s? The the maximum and the minimum current in the graph have the same magnitude which is 3.60 A.arrow_forwardA device called a railgun uses the magnetic force on currents to launch projectiles at very high speeds. An idealized model of a railgun is illustrated in (Figure 1). A 1.2 V power supply is connected to two conducting rails. A segment of copper wire, in a region of uniform magnetic field, slides freely on the rails. The wire has a 0.85 mΩ resistance and a mass of 4.4 g . Ignore the resistance of the rails. The power supply is switched on. What is the magnitude of the force on the wire? What will be the wire's speed after it has slid a distance of 8.0 cm ?arrow_forwardYou wish to produce a 10 V potential difference along the length of a 0.2 m long metal rod by moving it through a magnetic field. If the field has a strength of 2 T, what minimum speed would be needed? 2 m/s 10 m/s 20 m/sarrow_forward
- Your physics professor is doing a demo to demonstrate Faraday’s law. He usesa 5m long wire of 10 Ohms total resistance, and he shapes it as a perfect square.Your professor places the loop in a plane perpendicular to a 2 Tesla uniformmagnetic field pointing from above into the plane of the loop. Then yourprofessor re-shaped the wire in five seconds from a square into a perfect circle.The new loop remains in the same plane.a. What is the magnitude of the average induced emf in the wire during thistime?b. Find the direction, and average magnitude of the current in the loopduring the deformation? Explain your reasoning.arrow_forwardA device called a railgun uses the magnetic force on currents to launch projectiles at very high speeds. An idealized model of a railgun is illustrated in (Figure 1). A 1.2 V power supply is connected to two conducting rails. A segment of copper wire, in a region of uniform magnetic field, slides freely on the rails. The wire has a 0.85 mΩ resistance and a mass of 4.4 g . Ignore the resistance of the rails. The power supply is switched on. What is the current?arrow_forwardA bicycle generator rotates at 1,800 rad/s, producing a 15.5 V peak emf. It has a 45-turn, 1.00 by 3.00 cm rectangular coil in a 0.640 T field. It is driven by a 1.48 cm diameter wheel that rolls on the outside rim of the bicycle tire. (a) What is the velocity of the bicycle? (Enter the magnitude in m/s.) m/s (b) What is the maximum emf (in V) of the generator when the bicycle moves at 10.0 m/s, noting that it was 15.5 V under the original conditions? V (c) If the sophisticated generator can vary its own magnetic field, what field strength (in T) will it need at 5.00 m/s to produce a 9.00 V maximum emf?arrow_forward
- You've decided to make a magnetic projectile launcher for your science project. An aluminum bar of length l = 5.19 cm slides along metal rails through a magnetic field B = 0.664 T. The switch closes at t = 0 s , while the bar is at rest, and a battery of emf = 16.50 V starts a current flowing around the loop. The battery had internal resistance, r = 0.139 Ω. The resistance of rails and the bar are effectively zero. What is the terminal speed (in m/s) of the bar?arrow_forwardA segment of wire 7.4 cm long is moving at a velocity of 7.08 m/s toward a parallel (much longer) wire which carries a current of 7.55 A. At a particular instant the wire segment is 5.4 cm away from the long, current-carrying wire. What is the induced emf (voltage) between the two ends of the wire segment? 1.47E-05 V 5.88E-06 V 1.18E-05 V 1.91E-05 Varrow_forwardAt what speed must a sliding rod move to produce an emf of 1.05 V in a 1.54 T field, given the rod's length is 30.3 cm? m/sarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON