
Concept explainers
A massless string is wound around a solid cylinder that has a radius of 0.18 m and a mass of 27.23 kg. The free end of the string is tied to a block of mass 3.06 kg which hangs straight down. At t=0, the cylinder is allowed to spin about an axis through its center and the block falls, unwinding the string. Assume that the cylinder spins without friction.
What is the acceleration of the block?
I'm struggling to find the right angular acceleration of the pulley. I'm using Newton's second law for rotation, but I think I'm missing something. The only torque I have acting on the pulley is from the tension, but I know that the tension must be less than mg because the block is accelerating downward. How do I find the tension force of the string in a dynamic pulley system?
(I asked this question before, and the expert got confused about the no friction thing, but I'm pretty sure that just means that the pulley rotates around the pivot without friction. There is still friction between the pulley and the string.)

Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images

- If u dont know how to solve then suggest to other Subjects Experts if u know which expert will do Best thanks only human expert solvearrow_forwardThe system shown below consists of a uniform disk D that has a mass of mp = 3.0 kg and a radius of r = 1.0 meters. The disk is connected by a massless cable to a block. The system is released from rest and the disk starts rolling without sliding with the angular acceleration of a = rad 30 s2 in the clockwise direction. Determine the magnitude of the friction force (in Newtons) developed between the disk and the inclined surface at this instant. Consider 0 = 40° and g = 10 m. mparrow_forwardA drum can rotate about a fixed-point O. The A block is attached to a cord wrapping around the drum. The mass of the drum is md = 100kg and the radius is r = 0.5 m. The radius of gyration of the drum about point O is ko=0.3 m. The mass of the block is mb= 20kg. The block is released from rest. The acceleration due to gravity g=9.81 m/s2 . (2) ) If the mass moment of inertia of the drum about point O is IO, and the angular acceleration of the drum is α, select the correct moment equation of the whole drum-block system about the point O._____________ A. mbgr=rmb(rα) B. 0 C. mbgr=Ioα +rmb(rα) D. mbgr=Ioαarrow_forward
- The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. (1) If the mass center G is set as the origin (datum), the gravitational potential energy at the state 1 is___ (two decimal places)arrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration ke=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's length at the state 2 is L2=4 m. (3) The stretched spring length of the spring at the state 1 is_ places) 2₂ State 2 7717 State 1 _(m) (two decimalarrow_forwardConsider a toy vehicle with a body of mass M = 2Kg on two wheels, each of mass m = 1Kg and radius r = 0.1 m as shown in the figure. It starts from rest on top of a small hill of height H = 10 m and rolls without slipping. What is the linear velocity of the center of mass at the bottom of the hill? HINT: There is rotational and translational kinetic energy in this problem. Vo = 0 M- Vf M-2K m=lKg molkyarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





