
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:A mass is hung from the end of a string
with linear density 2.1 g/m around a small
frictionless peg. For some values of this mass
the string resonates with the vibrator's fre-
quency and develops visible standing waves.
A vibrator of constant frequency 312 Hz is
attached near one end of the string. The
vibrating length of the string is 2 m.
1. 25.0013
2. 13.2646
3. 20.8594
2 m
4. 10.7285
H = 2.1 g/m
5. 39.3067
312 Hz
vibrator
m
6. 13.6107
What is the mass m that will produce the
standing wave shown? The acceleration of
gravity is 9.8 m/s².
Answer in units of kg.
7. 25.6813
O 8. 21.1905
9. 28.2382
10. 19.9837

Transcribed Image Text:The figure shows two wave pulses that are
approaching each other.
1.
Which of the following best shows the shape
of the resultant pulse when the centers of the
pulses, points Pand Q, coincide?
2.
3.
4.
5.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 4.7 m long, its mass is 0.40 kg, and the force exerted on it by the children is 31 N. (a) What is the linear mass density of the rope (in kg/m)? kg/m (b) What is the speed of the waves on the rope (in m/s)? m/sarrow_forwardTo measure the acceleration due to gravity on a distant planet, an astronaut hangs a 0.0723-kg ball from the end of a wire. The wire has a length of 1.41 m and a linear density of 3.62 × 10-4 kg/m. Using electronic equipment, the astronaut measures the time for a transverse pulse to travel the length of the wire and obtains a value of 0.112 s. The mass of the wire is negligible compared to the mass of the ball. Determine the acceleration due to gravity. Number i Unitsarrow_forwardA string held fixed at both ends had a fundamental frequency of 125hz. Which of the following frequencies are not overtones. Could have more than 1 answer. 50hz 200hz 250hz 375hz 450hzarrow_forward
- A string is connected to an oscillator and then laid horizontally, with the other end draped over a pulley and a mass of 200g is hung from that end. The string is found to have a mass of 15g and a length of 1.2m. The oscillator is turned on and the frequency is tuned until a standing wave is seen. You see 6 full wavelengths along the 1.2m length of the string. The oscillator frequency is set to 63Hz. What is the speed of the wave on the string based on your measurements? Give your answer in m/s and to 1 decimal place.arrow_forward1.8 m/s A musical note on a piano has a frequency of 40 Hz. If the tension in the 2-m string is 308 N, and one-half wavelength occupies the string, what is the mass of the wire? 0.047 kg 0.024 kg 0.019 kg 0.031 kg O 0.040 kg with tension force T. is given by the wavearrow_forwardA guitar string has a mass per length of 2.33 x 10 kg/m and a tundamental frequency of 146.8 Hz when it is under a tonsion of 82 4N. The string breaks, and its owner has only a spare string of mass per length 6.61 x 10 kg/m.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON