College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A man stands on a merry-go-round that is rotating at 2.13 rad/s. If the coefficient of static friction between the man's shoes and the merry-go-round is
?s = 0.63,
how far from the axis of rotation can he stand without sliding? (Enter the maximum distance in meters.)m
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Pls answer all of it and box the answers thank youarrow_forwardA car accelerates uniformly from rest and reaches a speed of 22.4 m/s in 8.92 s. Assume the diameter of a tire is 57.8 cm. (a) Find the number of revolutions the tire makes during this motion, assuming that no slipping occurs. rev (b) What is the final angular speed of a tire in revolutions per second? rev/sarrow_forwardOn a playground, there is a merry-go-round. In order to get it moving, Bonnie applies a force of 17 N. The merry-go-round measures 5.3 m from the axis of rotation to the edge where Bonnie applies her force. Assuming she applies her force perpendicularly to a line drawn from the axis of rotation, what is the magnitude of the torque t Bonnie imparts to the merry-go-round? T = N.marrow_forward
- In the figure below, block 2 of mass m2 = 3.75 kg rests on a frictionless surface. It is attached to mass 1 (m1 = 2.50 kg) by a massless, stretchless string that passes over a frictionless pulley of radius R = 15.0 cm. When released from rest, block 2 moves to the right with an acceleration of 3.80 m/s2. What is the mass of the pulley? must draw FBDsarrow_forwardConsider the setup shown below. The blocks have masses 3.6 kg and 24 kg. The pulley has mass 7.4 kg, and is a uniform disc with radius 0.23 m. Assume the pulley to be fric- tionless, but the coefficient of friction between the block and the surface is 0.36. a T2 3.6 kg T1 = 0.36 22° 24 kg What is the acceleration of the blocks? As- sume the 24 kg mass is descending with accel- erațion a. The moment of inertia of the disk is - M R? and the acceleration of gravity is 2 9.8 m/s?. Answer in units of m/s?.arrow_forwardultiple-Concept Example 7 deals with the concepts that are important in this problem. A penny is placed at the outer edge of a c dius = 0.157 m) that rotates about an axis perpendicular to the plane of the disk at its center. The period of the rotation is 1.72 nd the minimum coefficient of friction necessary to allow the penny to rotate along with the disk. Units No units - Number .368arrow_forward
- A 270-g mass hangs from a string that is wrapped around a pulley, as shown in the figure. The pulley is suspended in such a way that it can rotate freely. When the mass is released, it accelerates toward the floor as the string unwinds. Model the pulley as a uniform solid cylinder of mass 1.00 kg and radius 7.00 cm. Assume that the thread has negligible mass and does not slip or stretch as it unwinds. Determine the magnitude a of the pulley's angular acceleration. rad/s? a = Determine the magnitude of the acceleration a of the descending weight. m/s? Question Source: Freedman College Physics 3e Publisher: Macmillan a =arrow_forwardA model airplane with mass 0.749 kg is tethered to the ground by a wire so that it flies in a horizontal circle 30.0 m in radius. The airplane engine provides a net thrust of 0.807 N perpendicular to the tethering wire. (a) Find the magnitude of the torque the net thrust produces about the center of the circle. N. m (b) Find the magnitude of the angular acceleration of the airplane. rad/s2 (c) Find the magnitude of the translational acceleration of the airplane tangent to its flight path. m/s2arrow_forwardTwo buckets of mass ?1=17.5 kg and ?2=15.1 kg are attached to the ends of a massless rope which passes over a pulley with a mass of ?p=8.53 kg and a radius of ?p=0.450 m. Assume that the rope does not slip on the pulley, and that the pulley rotates without friction. The buckets are released from rest and begin to move. If the larger bucket is a distance ?0=2.05 m above the ground when it is released, with what speed ? will it hit the ground?arrow_forward
- A string holds and wraps around a solid cylinder (7-kg and R = 3-m). A person pulls the string vertically upward, so the cylinder’s center of gravity does not move and is suspended in midair for 3 second. Note that the rotational inertia of the cylinder about its axis is MR2/2, the tension in the string is 3-N. what is the net force on the cylinder in Newton?arrow_forwardPLEASE SEND THE ANSWER IN 10 MINUTES !!! Find the magnitude of the net torque on the wheel in Figure below about the axle through O, taking a=13cm, b=41cm. The magnitude of the applied forces are F1=11N, F2=20N, and F3=11N. Provide your answer in units of m⋅N and round off your answer to 2 decimal places.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON