A magnet of mass 4.72 kg is suspended from the ceiling by a cord as shown. A large magnet is somewhere off to the right, pulling on the small hanging magnet with a constant force of F = 57.1 N. At what angle theta ?with respect to the vertical does the magnet hang?   Consider the same situation as in the previous problem. This time the magnet has mass 6.62 kg and the force pulling the magnet to the right has magnitude 180.6 N. What is the magnitude of the tension force in the cord?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter4: The Laws Of Motion
Section: Chapter Questions
Problem 23P: A bag of cement weighing 325 N hangs in equilibrium from three wires as suggested in Figure P4.23....
icon
Related questions
Question

A magnet of mass 4.72 kg is suspended from the ceiling by a cord as shown. A large magnet is somewhere off to the right, pulling on the small hanging magnet with a constant force of F = 57.1 N. At what angle theta ?with respect to the vertical does the magnet hang?

 

Consider the same situation as in the previous problem. This time the magnet has mass 6.62 kg and the force pulling the magnet to the right has magnitude 180.6 N. What is the magnitude of the tension force in the cord?

 

Same situation as in the previous problem this time the magnet has mass 7.25 kg, the force pulling it to the right is 111.3 N, the cord has length 0.54 m and the ceiling is 2.82 m above the floor. How far to the right of its start point will the magnet have traveled when it hits the floor after the cord is cut?

 

OK, one more time. This time the magnet has mass 6.78 kg and the force pulling it to the right is 175.5 N. When the magnet hits the floor, it continues being pulled to the right by the same magnetic force as before. The coefficient of kinetic friction between the magnet and the floor is 0.315. What will the magnet s acceleration be as it slides to the right along the floor? (Assume static friction is overcome and the magnet will slide.)

 

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Free body diagram
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning