A limitation on how many spectra per second can be recorded by a time-of-flight mass spectrometer is the time it takes the slowest ion to go from the source to the detector. Suppose we want to scan up to m/z 500 for ions with z = 1. Calculate the speed of this heaviest ion if it is accelerated through 5.00 kV in the source. How long would it take to drift 2.00 m through a spectrometer? At what frequency could you record spectra if a new extraction cycle were begun each time the heaviest ion reached the detector? What would be the frequency if you wanted to scan up to m/z 1000?
A limitation on how many spectra per second can be recorded by a time-of-flight mass spectrometer is the time it takes the slowest ion to go from the source to the detector. Suppose we want to scan up to m/z 500 for ions with z = 1. Calculate the speed of this heaviest ion if it is accelerated through 5.00 kV in the source. How long would it take to drift 2.00 m through a spectrometer? At what frequency could you record spectra if a new extraction cycle were begun each time the heaviest ion reached the detector? What would be the frequency if you wanted to scan up to m/z 1000?
Related questions
Question
- A limitation on how many spectra per second can be recorded by a time-of-flight mass spectrometer is the time it takes the slowest ion to go from the source to the detector. Suppose we want to scan up to m/z 500 for ions with z = 1. Calculate the speed of this heaviest ion if it is accelerated through 5.00 kV in the source. How long would it take to drift 2.00 m through a spectrometer? At what frequency could you record spectra if a new extraction cycle were begun each time the heaviest ion reached the detector? What would be the frequency if you wanted to scan up to m/z 1000?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps